cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A307666 Number of partitions of n into consecutive positive triangular numbers.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2019

Keywords

Comments

Equivalently, number of ways n can be expressed as the difference between two tetrahedral numbers. - Charlie Neder, Apr 24 2019
Records: a(10)=2, a(2180)=3, a(10053736)=4. - Robert Israel, Aug 20 2019

Examples

			10 = 1 + 3 + 6, so a(10) = 2.
		

Crossrefs

Programs

  • Maple
    N:= 100:
    V:= Vector(N):
    for i from 1 while i*(i+1)/2 <= N do
      s:= i*(i+1)*(i+2)/6;
      for j from i-1 to 0 by -1 do
        t:= j*(j+1)*(j+2)/6;
        if s-t > N then break fi;
        V[s-t]:= V[s-t]+1
      od;
    od:
    convert(V,list); # Robert Israel, Aug 20 2019

Formula

G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k*(k+1)/2).

A297199 a(n) = number of partitions of n into consecutive positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 15 2018

Keywords

Examples

			    1 = 1^3,                   so   a(1) = 1.
    8 = 2^3,                   so   a(8) = 1.
    9 = 1^3 + 2^3,             so   a(9) = 1.
   27 = 3^3,                   so  a(27) = 1.
   35 = 2^3 + 3^3,             so  a(35) = 1.
   36 = 1^3 + 2^3 + 3^3,       so  a(36) = 1.
   64 = 4^3,                   so  a(64) = 1.
   91 = 3^3 + 4^3,             so  a(91) = 1.
   99 = 2^3 + 3^3 + 4^3,       so  a(99) = 1.
  100 = 1^3 + 2^3 + 3^3 + 4^3, so a(100) = 1.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    F:= (a, b) -> (b^2*(b+1)^2-a^2*(a-1)^2)/4:
    A:= Vector(N):
    for b from 1 to floor(N^(1/3)) do
      for a from b to 1 by -1 do
         v:= F(a,b);
         if v > N then break fi;
         A[v]:= A[v]+1;
    od od:
    convert(A,list); # Robert Israel, Jan 15 2018, corrected Jan 29 2018
  • PARI
    A297199(n) = { my(s=0, k=1, c); while((c=k^3) <= n, my(u=n-c, i=k); while(u>0, i++; c = i^3; u=u-c); s += (!u); k++); (s); }; \\ Antti Karttunen, Aug 22 2019

Formula

a(A217843(n)) >= 1 for n > 1.
a(n) >= 2 for n in A265845. - Robert Israel, Jan 15 2018
G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^3). - Ilya Gutkovskiy, Apr 18 2019
a(A000578(n)) = A307609(n). - Antti Karttunen, Aug 22 2019

A299173 a(n) is the maximum number of squared consecutive positive integers into which the integer n can be partitioned.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 04 2018

Keywords

Comments

a(k^2)>=1, the inequality being strict if k is in A097812.

Examples

			25 = 5^2 = 3^2 + 4^2 and no such partition is longer, so a(25) = 2.
30 = 1^2 + 2^2 + 3^2 + 4^2 and no such partition is longer, so a(30) = 4.
2018 = 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 + 13^2 + 14^2 + 15^2 + 16^2 + 17^2 + 18^2 and no such partition is longer, so a(2018) = 12. (This special example is due to _Seiichi Manyama_.) - _Jean-François Alcover_, Feb 05 2018
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    A:= Vector(N):
    S:= n -> n*(n+1)*(2*n+1)/6:
    M:= floor(sqrt(N)):
    for d from 1 to M do
      for b from d to M do
        s:= S(b) - S(b-d);
        if s > N then break fi;
        A[s]:= d
    od od:
    convert(A,list); # Robert Israel, Feb 04 2018
  • Mathematica
    terms = 100; jmax = Ceiling[Sqrt[terms]]; kmax = Ceiling[(3*terms)^(1/3)]; Clear[a]; a[_] = 0; Do[r = Range[j, j + k - 1]; n = r . r; If[k > a[n], a[n] = k], {j, jmax}, {k, kmax}]; Array[a, terms]

A307608 Number of partitions of n^2 into consecutive positive squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			29^2 = 20^2 + 21^2, so a(29) = 2.
		

Crossrefs

Formula

a(n) = [x^(n^2)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^2).
a(n) = A296338(A000290(n)).
a(n) >= 2 for n in A097812.

A368073 Number of representations of n as the difference of two positive square pyramidal numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 10 2023

Keywords

Examples

			a(25) = 2: 25 = 30 - 5 = 55 - 30.
		

Crossrefs

Showing 1-5 of 5 results.