cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A185784 Accumulation array of A107985, by antidiagonals.

Original entry on oeis.org

1, 4, 4, 10, 15, 10, 20, 36, 36, 20, 35, 70, 84, 70, 35, 56, 120, 160, 160, 120, 56, 84, 189, 270, 300, 270, 189, 84, 120, 280, 420, 500, 500, 420, 280, 120, 165, 396, 616, 770, 825, 770, 616, 396, 165, 220, 540, 864, 1120, 1260, 1260, 1120, 864, 540, 220, 286, 715, 1170, 1560, 1820, 1911, 1820, 1560, 1170, 715, 286, 364, 924, 1540, 2100, 2520, 2744, 2744, 2520, 2100, 1540, 924, 364, 455, 1170, 1980, 2750, 3375, 3780, 3920, 3780, 3375, 2750, 1980, 1170, 455, 560
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2011

Keywords

Comments

Let W be the array given by w(1,1)=1, w(2,2)=-1, and w(n,k)=0 for all other (n,k).
Write "A < B" to indicate that an array B is the accumulation array of A (defined at A144112). Then W < A103451 < A002024 < A107985 < A185784 < A185785 < A185786.

Examples

			Northwest corner:
1....4....10....20....35
4....15...36....70....120
10...36...84....160...270
20...70...160...300...500
		

Crossrefs

Programs

  • Mathematica
    (* The code generates arrays A107985, A185784, A002024. *)
    f[n_,0]:=0;f[0,k_]:=0; (* used to form A002024 *)
    f[n_,k_]:=k*n(k+n)/2;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A107985 *)
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]  (* A185784 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0];
    TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* A002024 *)

Formula

T(n,k) = (n+k+1)*C(n+1,2)*C(k+1,2)/3, k>=0, n>=0.

A185785 Second accumulation array of A107985, by antidiagonals.

Original entry on oeis.org

1, 5, 5, 15, 24, 15, 35, 70, 70, 35, 70, 160, 200, 160, 70, 126, 315, 450, 450, 315, 126, 210, 560, 875, 1000, 875, 560, 210, 330, 924, 1540, 1925, 1925, 1540, 924, 330, 495, 1440, 2520, 3360, 3675, 3360, 2520, 1440, 495, 715, 2145, 3900, 5460, 6370, 6370, 5460, 3900, 2145, 715, 1001, 3080, 5775, 8400, 10290, 10976, 10290, 8400, 5775, 3080, 1001
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2011

Keywords

Comments

See A185784.

Examples

			Northwest corner:
1....5....15....35....70
5....24...70....160...315
15...70...200...450...875
35...160..450...1000..1925
		

Crossrefs

Cf. A185784.

Programs

  • Mathematica
    f[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 2, 3]*(n + k + 2)/4;
    Table[f[n - k + 1, k], {n, 50}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 12 2017 *)

Formula

T(n,k) = (n+k+2)*C(n+2,3)*C(k+2,3)/4, k>=1, n>=1.

A185786 Third accumulation array of A107985, by antidiagonals.

Original entry on oeis.org

1, 6, 6, 21, 35, 21, 56, 120, 120, 56, 126, 315, 405, 315, 126, 252, 700, 1050, 1050, 700, 252, 462, 1386, 2310, 2695, 2310, 1386, 462, 792, 2520, 4536, 5880, 5880, 4536, 2520, 792, 1287, 4290, 8190, 11466, 12740, 11466, 8190, 4290, 1287, 2002, 6930, 13860, 20580, 24696, 24696, 20580, 13860, 6930, 2002, 3003, 10725, 22275, 34650
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2011

Keywords

Comments

See A185784. The pattern established by the formulas for A185785, A185786, A185787, suggests that the H-th accumulation array of A107985 may be given by
T(n,k)=(n+k+H)C(n+H,H+1)C(k+H,H+1)/(H+2).

Examples

			Northwest corner:
1....6.....21.....56.....126
6....35....120....315....700
21...120...405....1050...2310
56...315...1050...2695...5880
		

Crossrefs

Cf. A185784.

Programs

  • Mathematica
    (See A185784.)
    f[n_, k_] := Binomial[k + 3, 4]*Binomial[n + 3, 4]*(n + k + 3)/5; Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 12 2017 *)

Formula

T(n,k) = (n+k+3)*C(n+3,4)*C(k+3,4)/5.

A002024 k appears k times; a(n) = floor(sqrt(2n) + 1/2).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Keywords

Comments

Integer inverse function of the triangular numbers A000217. The function trinv(n) = floor((1+sqrt(1+8n))/2), n >= 0, gives the values 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ..., that is, the same sequence with offset 0. - N. J. A. Sloane, Jun 21 2009
Array T(k,n) = n+k-1 read by antidiagonals.
Eigensequence of the triangle = A001563. - Gary W. Adamson, Dec 29 2008
Can apparently also be defined via a(n+1)=b(n) for n >= 2 where b(0)=b(1)=1 and b(n) = b(n-b(n-2))+1. Tested to be correct for all n <= 150000. - José María Grau Ribas, Jun 10 2011
For any n >= 0, a(n+1) is the least integer m such that A000217(m)=m(m+1)/2 is larger than n. This is useful when enumerating representations of n as difference of triangular numbers; see also A234813. - M. F. Hasler, Apr 19 2014
Number of binary digits of A023758, i.e., a(n) = ceiling(log_2(A023758(n+2))). - Andres Cicuttin, Apr 29 2016
a(n) and A002260(n) give respectively the x(n) and y(n) coordinates of the sorted sequence of points in the integer lattice such that x(n) > 0, 0 < y(n) <= x(n), and min(x(n), y(n)) < max(x(n+1), y(n+1)) for n > 0. - Andres Cicuttin, Dec 25 2016
Partial sums (A060432) are given by S(n) = (-a(n)^3 + a(n)*(1+6n))/6. - Daniel Cieslinski, Oct 23 2017
As an array, T(k,n) is the number of digits columns used in carryless multiplication between a k-digit number and an n-digit number. - Stefano Spezia, Sep 24 2022
a(n) is the maximum number of possible solutions to an n-statement Knights and Knaves Puzzle, where each statement is of the form "x of us are knights" for some 1 <= x <= n, knights can only tell the truth and knaves can only lie. - Taisha Charles and Brittany Ohlinger, Jul 29 2023

Examples

			From _Clark Kimberling_, Sep 16 2008: (Start)
As a rectangular array, a northwest corner:
  1 2 3 4 5 6
  2 3 4 5 6 7
  3 4 5 6 7 8
  4 5 6 7 8 9
This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...
		

References

  • Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.
  • K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985
  • R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.
  • J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

a(n+1) = 1+A003056(n), A022846(n)=a(n^2), a(n+1)=A002260(n)+A025581(n).
A123578 is an essentially identical sequence.

Programs

  • Haskell
    a002024 n k = a002024_tabl !! (n-1) !! (k-1)
    a002024_row n = a002024_tabl !! (n-1)
    a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]
    a002024_list = concat a002024_tabl
    a002024' = round . sqrt . (* 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 05 2015, Feb 12 2012, Mar 18 2011
    
  • Haskell
    a002024_list = [1..] >>= \n -> replicate n n
    
  • Haskell
    a002024 = (!!) $ [1..] >>= \n -> replicate n n
    -- Sascha Mücke, May 10 2016
    
  • Magma
    [Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* Branko Curgus, May 12 2009 *)
    Table[n, {n, 13}, {n}] // Flatten (* Robert G. Wilson v, May 11 2010 *)
    Table[PadRight[{},n,n],{n,15}]//Flatten (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */
    
  • PARI
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */
    
  • PARI
    t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */
    
  • PARI
    t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */
    
  • PARI
    A002024(n)=(sqrtint(n*8)+1)\2 \\ M. F. Hasler, Apr 19 2014
    
  • PARI
    a(n)=(sqrtint(8*n-7)+1)\2
    
  • PARI
    a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ R. J. Cano, Mar 17 2014
    
  • Python
    from math import isqrt
    def A002024(n): return (isqrt(8*n)+1)//2 # Chai Wah Wu, Feb 02 2022
  • Sage
    [floor(sqrt(2*n) +1/2) for n in (1..80)] # G. C. Greubel, Dec 10 2018
    

Formula

a(n) = floor(1/2 + sqrt(2n)). Also a(n) = ceiling((sqrt(1+8n)-1)/2). [See the Liu link for a large collection of explicit formulas. - N. J. A. Sloane, Oct 30 2019]
a((k-1)*k/2 + i) = k for k > 0 and 0 < i <= k. - Reinhard Zumkeller, Aug 30 2001
a(n) = a(n - a(n-1)) + 1, with a(1)=1. - Ian M. Levitt (ilevitt(AT)duke.poly.edu), Aug 18 2002
a(n) = round(sqrt(2n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
T(n,k) = A003602(A118413(n,k)); = T(n,k) = A001511(A118416(n,k)). - Reinhard Zumkeller, Apr 27 2006
G.f.: (x/(1-x))*Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, Oct 06 2003
Equals A127899 * A004736. - Gary W. Adamson, Feb 09 2007
Sum_{i=1..n} Sum_{j=i..n+i-1} T(j,i) = A000578(n); Sum_{i=1..n} T(n,i) = A000290(n). - Reinhard Zumkeller, Jun 24 2007
a(n) + n = A014132(n). - Vincenzo Librandi, Jul 08 2010
a(n) = ceiling(-1/2 + sqrt(2n)). - Branko Curgus, May 12 2009
a(A169581(n)) = A038567(n). - Reinhard Zumkeller, Dec 02 2009
a(n) = round(sqrt(2*n)) = round(sqrt(2*n-1)); there exist a and b greater than zero such that 2*n = 2+(a+b)^2 -(a+3*b) and a(n)=(a+b-1). - Fabio Civolani (civox(AT)tiscali.it), Feb 23 2010
A005318(n+1) = 2*A005318(n) - A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - a(n). - N. J. A. Sloane, Feb 11 2012
Expansion of psi(x) * x / (1 - x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Mar 19 2014
G.f.: (x/(1-x)) * Product_{n>=1} (1 + x^n) * (1 - x^(2*n)). - Paul D. Hanna, Feb 27 2016
a(n) = 1 + Sum_{i=1..n/2} ceiling(floor(2(n-1)/(i^2+i))/(2n)). - José de Jesús Camacho Medina, Jan 07 2017
a(n) = floor((sqrt(8*n-7)+1)/2). - Néstor Jofré, Apr 24 2017
a(n) = floor((A000196(8*n)+1)/2). - Pontus von Brömssen, Dec 10 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
G.f. as array: (x^2*(1 - y)^2 + y^2 + x*y*(1 - 2*y))/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Apr 22 2024

A098737 Triangle read by rows: number of triangles formed by lines from two vertices of a triangle to the opposite side that segment the opposite sides into m and n segments. Since f(m,n) = f(n,m), it suffices to give the results in a triangular table.

Original entry on oeis.org

1, 3, 8, 6, 15, 27, 10, 24, 42, 64, 15, 35, 60, 90, 125, 21, 48, 81, 120, 165, 216, 28, 63, 105, 154, 210, 273, 343, 36, 80, 132, 192, 260, 336, 420, 512, 45, 99, 162, 234, 315, 405, 504, 612, 729, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, 66, 143, 231, 330
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Oct 29 2004

Keywords

Comments

Frank Buss gave this as a puzzle; K. L. Metlov solved it, submitting his result in the J language created by Kenneth Iverson. The program given below is only five tokens long. J defines a series of three functions to be a "fork" defined by x (f g h ) y = (x f y) g (f h y) - a generalization of the usual mathematical practice of writing (f + g) y to mean (f y) + (g y). J also has a primitive "half" and has a dummy function "cap" whose purpose is to permit more forks to be written. 3 (* * +) 5 is thus (3 * 5) * (3 + 5) or 120. cap half 3 (* * +) 5 is thus 60.
This sequence is the dimensions of the various irreducible representations of SU(3). In the language of physics, the integers m and n are one more than the numbers of quarks or antiquarks, respectively, that label the representation. - Alex Meiburg, Dec 13 2020 =
Comment on the previous one: D(n, m) = f(m+1, n+1) = (n+1)*(m+1)*(n+m+2), for 0 <= m <= n, (given as array D(n,m) as example in A212331) is the dimension of the irreducible SU(3) multiplet (n, m), denoted also by D(n, m). The multiplet (m, n) is denoted also by a bar over D(n, m). The irreducuble tensor t(n, m) is symmetric in n upper indices from {1,2,3}, symmetric in m lower indices, and traceless in every pair of an upper and a lower index. See the Coleman reference for a derivation. - Wolfdieter Lang, Dec 18 2020

Examples

			f(3, 5) is 60, from 1/2 * (3 * 5) * (3 + 5) or 1/2 * 15 * 8.
The triangle f(m, n) starts:
m\n     1   2   3   4   5   6   7   8   9   10   11 ...
1:      1
2:      3   8
3:      6  15  27
4:     10  24  42  64
5:     15  35  60  90 125
6:     21  48  81 120 165 216
7:     28  63 105 154 210 273 343
8:     36  80 132 192 260 336 420 512
9:     45  99 162 234 315 405 504 612 729
10:    55 120 195 280 375 480 595 720 855 1000
11:    66 143 231 330 440 561 693 836 990 1155 1331
... reformatted and extended by _Wolfdieter Lang_, Dec 18 2020
		

References

  • Sidney Coleman, Quantum Field Theory, Eds. Bryan Gin-ge Chen et al., World Scientific, 2019, eq. (37.8), p. 799.

Crossrefs

Cf. A000217, A005563, A140091, A067728, A212331, A140681 (columns), A000578, A059270, A331433 (diagonals).
(diagonal).
See also A107985, A212331 (array as example).

Programs

  • J
    cap half * * +
  • Mathematica
    t[m_, n_] := (m*n)(m + n)/2; Flatten[ Table[ t[m, n], {m, 10}, {n, m}]] (* Robert G. Wilson v, Nov 04 2004 *)

Formula

f(m, n) = 1/2 * (m * n) * (m + n).
G.f.: x*y*(1 + 4*x*y + x^2*(y - 9)*y - 3*x^3*(y - 1)*y + 3*x^4*y^2)/((1 - x)^3*(1 - x*y)^4). - Stefano Spezia, Oct 01 2023

Extensions

More terms from Robert G. Wilson v, Nov 04 2004

A362679 a(n) is the permanent of the n X n symmetric matrix M(n) defined by M[i, j, n] = min(i, j)*(n + 1) - i*j.

Original entry on oeis.org

1, 1, 5, 72, 2309, 140400, 14495641, 2347782144, 562385930985, 190398813728000, 87889475202276461, 53726132414026874880, 42454821207656237294381, 42495322215073539046387712, 52954624815227996007075890625, 80932107560443542398970529579008, 149736953621087625813286348913927569
Offset: 0

Views

Author

Stefano Spezia, Apr 29 2023

Keywords

Comments

M(n-1)/n is the inverse of the Cartan matrix for SU(n): the special unitary group of degree n.
The elements sum of the matrix M(n) is A002415(n+1).
The antidiagonal sum of the matrix M(n) is A005993(n-1).
The n-th row of A107985 gives the row or column sums of the matrix M(n+1).

Examples

			a(3) = 72:
           [3, 2, 1]
    M(3) = [2, 4, 2]
           [1, 2, 3]
a(5) = 140400:
           [5, 4, 3, 2, 1]
           [4, 8, 6, 4, 2]
    M(5) = [3, 6, 9, 6, 3]
           [2, 4, 6, 8, 4]
           [1, 2, 3, 4, 5]
		

References

  • E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.

Crossrefs

Cf. A000272, A000292 (trace), A002415, A003983, A003991, A005993, A106314 (antidiagonals), A107985.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](
        Matrix(n, (i, j)-> min(i, j)*(n+1)-i*j))):
    seq(a(n), n=0..16);  # Alois P. Heinz, Apr 30 2023
  • Mathematica
    M[i_, j_, n_]:=Min[i, j](n+1)-i j; Join[{1}, Table[Permanent[Table[M[i, j, n], {i, n}, {j, n}]], {n, 17}]]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, min(i, j)*(n + 1) - i*j)); \\ Michel Marcus, Apr 30 2023

Formula

Conjecture: det(M(n)) = A000272(n+1).
The conjecture is true (see proof in Links). - Stefano Spezia, May 24 2023

A157636 Triangle read by rows: T(n, k) = 1 if k=0 or k=n, otherwise = n*k*(n-k)/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 6, 8, 6, 1, 1, 10, 15, 15, 10, 1, 1, 15, 24, 27, 24, 15, 1, 1, 21, 35, 42, 42, 35, 21, 1, 1, 28, 48, 60, 64, 60, 48, 28, 1, 1, 36, 63, 81, 90, 90, 81, 63, 36, 1, 1, 45, 80, 105, 120, 125, 120, 105, 80, 45, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  1,  1;
  1,  3,  3,   1;
  1,  6,  8,   6,   1;
  1, 10, 15,  15,  10,   1;
  1, 15, 24,  27,  24,  15,   1;
  1, 21, 35,  42,  42,  35,  21,   1;
  1, 28, 48,  60,  64,  60,  48,  28,  1;
  1, 36, 63,  81,  90,  90,  81,  63, 36,  1;
  1, 45, 80, 105, 120, 125, 120, 105, 80, 45, 1;
		

Crossrefs

Programs

  • Magma
    A157636:= func< n,k | k eq 0 or k eq n select 1 else n*k*(n-k)/2 >;
    [A157636(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 13 2021
    
  • Mathematica
    T[n_, k_] = If[n*k*(n-k)==0, 1, n*k*(n-k)/2];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten
  • Sage
    def A157636(n,k): return 1 if (k==0 or k==n) else n*k*(n-k)/2
    flatten([[A157636(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Dec 13 2021

Formula

T(n, k) = 1 if k=0 or k=n, otherwise = n*k*(n-k)/2.
Sum_{k=0..n} T(n, k) = 2 + n^2*(n^2 - 1)/12 = 2 + A002415(n) if n>0.
From G. C. Greubel, Dec 13 2021: (Start)
T(n, k) = T(n, n-k).
T(n, 1) = [n<2] + binomial(n, 2).
T(n, 2) = A132411(n-1), for n >= 2.
T(2*n, n) = [n=0] + A000578(n). (End)

A346159 Number of n-dimensional representations of the group SU(3).

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 8, 8, 9, 17, 19, 21, 35, 39, 44, 68, 79, 87, 127, 145, 162, 228, 261, 291, 395, 451, 506, 665, 760, 850, 1096, 1254, 1400, 1765, 2016, 2249, 2800, 3188, 3556, 4356, 4953, 5522, 6688, 7581, 8447, 10123, 11464, 12747, 15141, 17094, 18997, 22395
Offset: 0

Views

Author

Michel Marcus, Jul 08 2021

Keywords

Crossrefs

Cf. A107985 (as a rectangular array).

Programs

  • PARI
    fij(lim) = my(imax = ceil((sqrt(8*lim+1)-1)/2), list=List()); for (i=1, imax, for (j=1, imax, if ((p=i*j*(i+j)/2) <= lim, listput(list, p)))); list;
    lista(nn) = my(v=fij(nn), x='x+O('x^nn), w=Vec(prod(k=1, #v, 1/(1-x^v[k])))); vector(nn, k, w[k]);

Formula

G.f.: Product_{j,k>=1} 1/(1-x^(j*k*(j+k)/2)).

A362711 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j.

Original entry on oeis.org

1, 1, 17, 1177, 210249, 76961257, 50203153993, 53127675356625, 85252003916011889, 197131843368693693937, 631233222450168374457057
Offset: 0

Views

Author

Stefano Spezia, Apr 30 2023

Keywords

Comments

M(n-1)/n is the inverse of the Cartan matrix for SU(n): the special unitary group of degree n.
The elements sum of the matrix M(n) is A002415(n+1).
The antidiagonal sum of the matrix M(n) is A005993(n-1).
The n-th row of A107985 gives the row or column sums of the matrix M(n+1).

Examples

			a(2) = 17:
    [4, 3, 2, 1]
    [3, 6, 4, 2]
    [2, 4, 6, 3]
    [1, 2, 3, 4]
		

References

  • E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.

Crossrefs

Cf. A000272, A000292 (trace), A002415, A003983, A003991, A005993, A106314 (antidiagonals), A107985, A362679 (permanent).

Programs

  • Mathematica
    M[i_, j_, n_]:=Part[Part[Table[Min[r,c](n+1)-r c, {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
  • PARI
    tm(n) = matrix(n, n, i, j, min(i, j)*(n + 1) - i*j);
    a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023

Formula

Conjecture: det(M(n)) = A000272(n+1).
The conjecture is true (see proof in Links). - Stefano Spezia, May 24 2023

Extensions

a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023
Showing 1-9 of 9 results.