cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098743 Number of partitions of n into aliquant parts (i.e., parts that do not divide n).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 1, 3, 3, 13, 1, 23, 10, 11, 9, 65, 8, 104, 14, 56, 66, 252, 10, 245, 147, 206, 77, 846, 35, 1237, 166, 649, 634, 1078, 60, 3659, 1244, 1850, 236, 7244, 299, 10086, 1228, 1858, 4421, 19195, 243, 17660, 3244, 12268, 4039, 48341, 1819, 27675
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 01 2004

Keywords

Comments

It seems very plausible that the low and high water marks occur when n is a factorial number or a prime: see A260797, A260798.
a(A000040(n)) = A002865(n) - 1.

Examples

			7 = 2 + 2 + 3 = 2 + 5 = 3 + 4, so a(7) = 3.
a(10) = #{7+3,6+4,4+3+3} = 3, all other partitions of 10 contain at least one divisor (10, 5, 2, or 1).
		

Crossrefs

See also A057562 (relatively prime parts).

Programs

  • Haskell
    a098743 n = p [nd | nd <- [1..n], mod n nd /= 0] n where
       p _  0 = 1
       p [] _ = 0
       p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 22 2011
    
  • Haskell
    -- with memoization
    import Data.MemoCombinators (memo3, integral)
    a098743 n = a098743_list !! n
    a098743_list = map (\x -> pMemo x 1 x) [0..] where
       pMemo = memo3 integral integral integral p
       p   0 = 1
       p x k m | m < k        = 0
               | mod x k == 0 = pMemo x (k + 1) m
               | otherwise    = pMemo x k (m - k) + pMemo x (k + 1) m
    -- Reinhard Zumkeller, Aug 08 2015
    
  • Maple
    a := [1,0,0,0,0]; M:=300; for n from 5 to M do t1:={seq(i,i=1..n)}; t3 := t1 minus divisors(n); t4 := mul(1/(1-x^i), i in t3); t5 := series(t4,x,n+2); a:=[op(a), coeff(t5,x,n)]; od: a; # N. J. A. Sloane, Aug 08 2015
    # second Maple program:
    a:= proc(m) option remember; local b; b:= proc(n, i)
          option remember; `if`(n=0, 1, `if`(i<2, 0, b(n, i-1)+
          `if`(irem(m, i)=0, 0, b(n-i, min(i, n-i))))) end; b(m$2)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 11 2018
  • Mathematica
    a[m_] := a[m] = Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 2, 0, b[n, i-1] + If[Mod[m, i] == 0, 0, b[n-i, Min[i, n-i]]]]]; b[m, m]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
  • PARI
    a(n)={polcoef(1/prod(k=1, n, if(n%k, 1 - x^k, 1) + O(x*x^n)), n)} \\ Andrew Howroyd, Aug 29 2018

Extensions

a(0) added and offset changed by Reinhard Zumkeller, Nov 22 2011
New wording for definition suggested by Marc LeBrun, Aug 07 2015