cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098828 Primes of the form 2*n^2 + 2*n - 1.

Original entry on oeis.org

3, 11, 23, 59, 83, 179, 263, 311, 419, 479, 683, 839, 1103, 1511, 2111, 2243, 2663, 2963, 3119, 4139, 4703, 5099, 5303, 5939, 7079, 10223, 11399, 12011, 12323, 12959, 17483, 19403, 21011, 21839, 22259, 24419, 25763, 27143, 27611, 28559, 30011
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 09 2004

Keywords

Comments

a(n)==3 (mod 4).
Equivalently primes p such that 2p+3 is square.
Also 3 followed by primes p of the form 2*n^2+6*n+3 = 2*(n+2)^2-2*(n+2)-1 (see the first comment) such that 2^(p-1)+3 is not prime. - Vincenzo Librandi, Jan 03 2009; M. F. Hasler, Jan 07 2009; R. J. Mathar, Jan 14 2009; Bruno Berselli, Sep 23 2013

Crossrefs

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(30100) | exists(t){ n: n in [1..Isqrt(p div 2)] | 2*n^2+6*n+3 eq p } and not IsPrime(2^(p-1)+3) ];
    
  • Mathematica
    Select[Table[Prime[n], {n, 3500}], IntegerQ[(2# + 3)^(1/2)] &] (* Ray Chandler, Oct 26 2004 *)
  • PARI
    list(lim)=my(v=List()); for(n=1,oo, my(t=2*n*(n+1)-1); if(t>lim, return(Vec(v))); if(isprime(t), listput(v,t))) \\ Charles R Greathouse IV, Feb 26 2025

Formula

a(n) = (A109367(n) - 3)/2.

Extensions

Corrected by Ray Chandler, Oct 26 2004
Edited by N. J. A. Sloane, Jan 25 2009
Name edited by Charles R Greathouse IV, Feb 26 2025