A098845 Numbers k such that 4^k - 2^k - 1 is prime.
2, 4, 5, 9, 10, 18, 38, 45, 50, 57, 108, 161, 208, 224, 225, 240, 354, 597, 634, 1008, 1080, 1468, 1525, 1560, 3298, 3329, 3846, 4129, 5430, 8616, 11834, 12988, 14610, 43401, 45306, 53776, 54449, 67497, 74025, 122449, 136845, 142896, 164541, 171157, 187668, 274054, 316944, 349296
Offset: 1
Keywords
Links
- Chris Caldwell, The largest known primes
- Mike Hamburg, Ed448-Goldilocks, a new elliptic curve, Cryptology ePrint Archive, Report 2015/625.
Crossrefs
Cf. similar sequences listed in A265481.
Programs
-
Magma
[n: n in [0..1000] | IsPrime(2^n*(2^n-1)-1)]; // Vincenzo Librandi, Dec 08 2015
-
Maple
select(t -> isprime(4^t-2^t-1), [$1..1000]); # Robert Israel, Dec 08 2015
-
Mathematica
Select[Range[15000], PrimeQ[4^# - 2^# - 1] &] (* Vincenzo Librandi, Dec 08 2015 *)
-
PARI
for(n=1, 1e3, if(ispseudoprime(4^n-2^n-1), print1(n, ", "))) \\ Altug Alkan, Dec 08 2015
-
Python
from sympy import isprime for n in range(1,1000): if isprime(4**n-2**n-1): print(n, end=', ') # Stefano Spezia, Jan 11 2019
Extensions
Extended to a(44) = 349296 (2^698592 - 2^349296 - 1 is a 210298-digit certified prime) by Pierre CAMI, Jan 11 2009
Definition simplified by Pierre CAMI, May 10 2012
a(30) corrected by Robert Israel, Dec 14 2015
4 missing terms between a(41) = 136845 and what is now a(46) = 274054 added by Fabrice Lavier, Jan 10 2019
Comments