cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260618 Irregular triangle read by rows: denominators of the expansion of k/n using the greedy algorithm, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 3, 2, 6, 1, 4, 2, 2, 4, 1, 5, 3, 15, 2, 10, 2, 4, 20, 1, 6, 3, 2, 2, 6, 2, 3, 1, 7, 4, 28, 3, 11, 231, 2, 14, 2, 5, 70, 2, 3, 42, 1, 8, 4, 3, 24, 2, 2, 8, 2, 4, 2, 3, 24, 1, 9, 5, 45, 3, 3, 9, 2, 18, 2, 6, 2, 4, 36, 2, 3, 18, 1, 10, 5, 4, 20, 3, 15, 2, 2, 10, 2, 5, 2, 4, 20, 2, 3, 15, 1, 11, 6, 66, 4, 44, 3, 33, 3, 9, 99, 2, 22, 2, 8, 88, 2, 5, 37, 4070, 2, 4, 15, 660, 2, 3, 14, 231, 1
Offset: 1

Views

Author

Matthew Campbell, Sep 17 2015

Keywords

Examples

			Triangle begins ({} included for fraction separation):
  {1};
  {2}, {1};
  {3}, {2, 6}, {1};
  {4}, {2}, {2, 4}, {1};
  {5}, {3, 15}, {2, 10}, {2, 4, 20}, {1};
  {6}, {3}, {2}, {2, 6}, {2, 3}, {1};
  {7}, {4, 28}, {3, 11, 231}, {2, 14}, {2, 5, 70}, {2, 3, 42}, {1};
  {8}, {4}, {3, 24}, {2}, {2, 8}, {2, 4}, {2, 3, 24}, {1};
  {9}, {5, 45}, {3}, {3, 9}, {2, 18}, {2, 6}, {2, 4, 36}, {2, 3, 18}, {1};
  {10}, {5}, {4, 20}, {3, 15}, {2}, {2, 10}, {2, 5}, {2, 4, 20}, {2, 3, 15}, {1};
  {11}, {6, 66}, {4, 44}, {3, 33}, {3, 9, 99}, {2, 22}, {2, 8, 88}, {2, 5, 37, 4070}, {2, 4, 15, 660}, {2, 3, 14, 231}, {1};
		

Crossrefs

Programs

  • PARI
    rep(f)={L=List(); while(f<>0, my(t=ceil(1/f)); listput(L,t); f-=1/t); Vec(L)}
    row(n)={concat(apply(k->rep(k/n), [1..n]))}
    for(n=1, 11, print(row(n))) \\ Andrew Howroyd, Feb 26 2018

A100140 Largest denominator of greedy Egyptian fraction sum for M/N.

Original entry on oeis.org

2, 6, 4, 20, 6, 231, 24, 45, 20, 4070, 12, 2145, 231, 120, 240, 3039345, 45, 2359420, 180, 1428, 4070, 1019084, 120, 53307975, 2145, 1350, 1428, 1003066152, 120, 1127619917796295, 16800, 26796, 3039345, 1104740, 72, 884004, 2359420, 1288092
Offset: 2

Views

Author

Robert Munafo, Nov 06 2004

Keywords

Comments

Each term gives the largest of the N-1 terms in A050210 corresponding to the fractions with denominator N.

Examples

			Consider a(5). There are 4 fractions with 5 in the denominator: 1/5=1/5, 2/5=1/3+1/15, 3/5=1/2+1/10 and 4/5=1/2+1/4+1/20. Of these, the largest denominator is 20, so a(5)=20.
		

References

  • R. K. Guy, "Egyptian Fractions." section D11 in "Unsolved Problems in Number Theory", 2nd ed. New York: Springer-Verlag, pp. 158-166, 1994.

Crossrefs

Programs

  • Maxima
    /* MACSYMA or maxima */ egypt(x) := block([i,n,d,p,e, on, od], ( n : num(x), d : n/x, on : n, od : d, p : 0, e : [], for i:1 while x>0 do ( n : num(x), d : n/x, p : fix((d+n-1)/n), x : x - 1/p, e : append(e, [p]) ), return(p) ) ); for b:2 step 1 thru 100 do ( max:2, for a:2 step 1 thru b-1 do ( if gcd(a,b)=1 then ( m : egypt(a/b), if m>max then max : m ) ), print("a[", b, "]=", max) ), t$

Extensions

a(6) corrected by Seiichi Manyama, Sep 18 2022
Showing 1-2 of 2 results.