cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098873 Least k such that 2*((6*n)^k) - 1 is prime.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 4, 1, 5, 1, 34, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 24, 8, 1, 10, 7, 1, 1, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 28, 5, 2, 2484, 1, 2, 1, 1
Offset: 1

Views

Author

Pierre CAMI, Oct 13 2004

Keywords

Examples

			2*((6*1)^1) - 1 = 11 prime, so a(1)=1
2*((6*2)^1) - 1 = 23 prime, so a(2)=1
2*((6*3)^1) - 1 = 35 = 5*7
2*((6*3)^2) - 1 = 647 prime, so a(3)=2
		

Programs

  • Mathematica
    lk[n_]:=Module[{k=1},While[!PrimeQ[2((6n)^k)-1],k++];k]; Array[lk,50] (* Harvey P. Dale, Apr 02 2018 *)

Extensions

Corrected by Harvey P. Dale, Apr 02 2018