A119591 Least k such that 2*n^k - 1 is prime.
1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
Offset: 2
Links
- Eric Chen, Table of n, a(n) for n = 2..580
- Gary Barnes, Riesel conjectures and proofs
- Eric Chen, Table of n, a(n) for n = 2..2050 status
- Prime Wiki, Riesel prime small bases least n
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
-
PARI
a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015
Formula
Extensions
Corrected and extended by Ray Chandler, Jun 08 2006
Comments