cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098884 Number of partitions of n into distinct parts in which each part is congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 2, 5, 7, 7, 5, 3, 3, 7, 11, 11, 7, 4, 6, 11, 15, 15, 11, 7, 8, 15, 22, 22, 15, 10, 13, 22, 30, 30, 23, 16, 18, 30, 42, 42, 31, 22, 27, 43, 56, 56, 44, 33, 37, 57, 77, 77, 59, 45, 53, 79, 101, 101, 82, 64, 71
Offset: 0

Views

Author

Noureddine Chair, Oct 14 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A281244 and A280456. - Vaclav Kotesovec, Jan 18 2017

Examples

			E.g. a(25)=5 because 25=19+5+1=17+7+1=13+7+5=13+11+1.
G.f. = 1 + x + x^5 + x^6 + x^7 + x^8 + x^11 + 2*x^12 + 2*x^13 + x^14 + x^16 + ...
G.f. = q + q^13 + q^61 + q^73 + q^85 + q^97 + q^133 + 2*q^145 + 2*q^157 + q^169 + ...
		

Crossrefs

Programs

  • Haskell
    a098884 = p a007310_list where
       p _  0     = 1
       p (k:ks) m = if k > m then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    series(product((1+x^(6*k-1))*(1+x^(6*k-5)),k=1..100),x=0,100);
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - (-x)^k + x^(2 k), {k, n}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k + x^(2 k), {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] / Product[ 1 + x^k, {k, 3, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 6}] Product[ 1 + x^k, {k, 5, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ -x^3, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 26 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); m = sqrtint(3*n + 1); polcoeff( sum(k= -((m-1)\3), (m+1)\3, x^(k * (3*k - 2)), A) / eta(x^6 + A), n))}; /* Michael Somos, Sep 20 2013 */
    

Formula

Expansion of chi(x) / chi(x^3) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of f(x^1, x^5) / f(-x^6) in powers of x where f(,) is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of G(x^6) * H(-x) + x * G(-x) * H(x^6) where G() (A003114), H() (A003106) are Rogers-Ramanujan functions.
Expansion of q^(-1/12) * eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, ...]. - Michael Somos, Jun 26 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227398. - Michael Somos, Sep 20 2013
G.f.: Product_{k>0} (1 - (-x)^k + x^(2*k)).
G.f.: 1 / Product_{k>0} (1 - x^(2*k - 1) + x^(4*k - 2)).
G.f.: 1 / Product_{k>0} ((1 + x^(6*k - 3)) / (1 + x^(2*k - 1))).
G.f.: Product_{k>0} ((1 + x^(6*k - 1)) * (1 + x^(6*k - 5))).
G.f.: 1 / Product_{k>0} (1 + (-x)^(3*k - 1)) * (1 + (-x)^(3*k - 2)).
G.f.: (Sum_{k in Z} x^(k * (3*k - 2))) / (Sum_{k in Z} (-1)^k * x^(3*k * (3*k-1))).
A109389(n) = (-1)^n * a(n). Convolution inverse of A227398.
a(n) ~ exp(sqrt(n)*Pi/3)/ (2*sqrt(6)*n^(3/4)) * (1 + (Pi/72 - 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 30 2015, extended Jan 18 2017

Extensions

Typo in Maple program fixed by Vaclav Kotesovec, Nov 15 2016