A099014 a(n) = Fibonacci(n)*(Fibonacci(n-1)^2 + Fibonacci(n+1)^2).
0, 1, 5, 20, 87, 365, 1552, 6565, 27825, 117844, 499235, 2114729, 8958240, 37947545, 160748653, 680941780, 2884516383, 12219006325, 51760543280, 219261176861, 928805254905, 3934482189716, 16666734024715, 70601418270865
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..173 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
Programs
-
Magma
[Fibonacci(n)*(Fibonacci(n-1)^2+Fibonacci(n+1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
Mathematica
CoefficientList[Series[x*(1 + 2*x - x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *) Join[{0},#[[2]](#[[1]]^2+#[[3]]^2)&/@Partition[Fibonacci[ Range[ 0,30]],3,1]] (* or *) LinearRecurrence[{3,6,-3,-1},{0,1,5,20},30] (* Harvey P. Dale, Oct 17 2021 *)
-
PARI
a(n)=fibonacci(n)*(fibonacci(n-1)^2+fibonacci(n+1)^2) \\ Charles R Greathouse IV, Jun 05 2011
Formula
G.f.: x*(1+2*x-x^2)/(1-3*x-6*x^2+3*x^3+x^4) = x*(1+2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)).
a(n) = Sum_{k=0..n} (-1)^(k+1)*Fib(k)*(0^(n-k) + 6*A001076(n-k)).
a(n) = ((-1)^n*Fib(n) + 3*Fib(3*n))/5. - Ehren Metcalfe, May 21 2016
Comments