cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099044 a(n) = (2*0^n + 3^n*binomial(2*n,n))/3.

Original entry on oeis.org

1, 2, 18, 180, 1890, 20412, 224532, 2501928, 28146690, 318995820, 3636552348, 41655054168, 479033122932, 5527305264600, 63958818061800, 741922289516880, 8624846615633730, 100454095876204620, 1171964451889053900, 13693479385229998200, 160213708807190978940
Offset: 0

Views

Author

Paul Barry, Sep 24 2004

Keywords

Comments

(1 + (k-1)*sqrt(1-4*k*x))/(k*sqrt(1-4*k*x)) is the g.f. for ((k-1)*0^n + k^n*binomial(2*n,n))/k.

Crossrefs

Programs

  • Magma
    [(2*0^n + 3^n*Binomial(2*n, n))/3: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Mathematica
    Join[{1}, Table[3^(n-1)*binomial(2*n,n), {n,1,30}]] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    for(n=0, 30, print1((2*0^n + 3^n*binomial(2*n,n))/3, ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: 1/3 + 4*x/(sqrt(1-12*x)(1-sqrt(1-12*x))) = (1 + 2*sqrt(1-12*x))/(3*sqrt(1-12*x)).
n*a(n) +6*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 24 2012
E.g.f.: (2 + exp(6*x) * BesselI(0,6*x)) / 3. - Ilya Gutkovskiy, Nov 17 2021