A099071 Composite numbers k such that the concatenation of all nonprime positive integers up to k in decreasing order is prime.
4, 6, 8, 9, 26, 1752
Offset: 1
Examples
26 is a term: 26 is composite; nonprimes up to 26 are 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26; and 26252422212018161514121098641 is prime.
Links
- Carlos Rivera, Puzzle 8. Primes by Listing, The Prime Puzzles and Problems Connection.
Programs
-
Mathematica
Do[If[ !PrimeQ[n]&&PrimeQ[(v={};Do[If[ !PrimeQ[n+1-j], v=Join[v, IntegerDigits[n+1-j]]], {j, n}];FromDigits[v])], Print[n]], {n, 6013}] cnpQ[n_]:=PrimeQ[FromDigits[Flatten[IntegerDigits/@Select[Range[n,1,-1],!PrimeQ[#]&]]]]; Select[Range[1800],!PrimeQ[#]&&cnpQ[#]&] (* Harvey P. Dale, Jul 19 2020 *)
Comments