A100003
Prime numbers p such that the concatenation of all odd primes up through p in decreasing order is prime.
Original entry on oeis.org
3, 5, 17, 89, 383, 8831
Offset: 1
17 is in the sequence because 17.13.11.7.5.3 is prime (dot between numbers means concatenation).
-
Do[If[PrimeQ[(v={};Do[v=Join[v, IntegerDigits[Prime[n-j+1]]], {j, n-1}];FromDigits[v])], Print[Prime[n]]], {n, 2, 4413}]
Prime[#]&/@Select[Range[100],PrimeQ[FromDigits[Flatten[IntegerDigits/@ Prime[Range[#,2,-1]]]]]&] (* To generate a(6) increase the Range by 1000, but the program will run a long time. *) (* Harvey P. Dale, Nov 27 2015 *)
A099070
Numbers k such that the concatenation of all nonprime natural numbers up to k with decreasing order is prime.
Original entry on oeis.org
4, 5, 6, 7, 8, 9, 26, 1752, 1753
Offset: 1
9 is in the sequence because all nonprime natural numbers up to 9 are 1,4,6,8 & 9 and 98641 is prime.
-
Do[If[PrimeQ[(v={};Do[If[ !PrimeQ[n+1-j], v=Join[v, IntegerDigits [n+1-j]]], {j, n}];FromDigits[v])], Print[n]], {n, 5450}]
A099073
Numbers k such that the concatenation of the first k-1 odd primes in decreasing order is prime.
Original entry on oeis.org
2, 3, 7, 24, 76, 1100
Offset: 1
7 is in the sequence because the first 6 odd primes are 3,5,7,11,13,17 and 17.13.11.7.5.3 is prime (dot between numbers means concatenation).
-
Do[If[PrimeQ[(v={};Do[v=Join[v, IntegerDigits[Prime[n-j+1]]], {j, n-1}];FromDigits[v])], Print[n]], {n, 2, 4500}]
Select[Range[1100],PrimeQ[FromDigits[Flatten[IntegerDigits/@ Reverse[ Prime[ Range[ 2,#]]]]]]&] (* Harvey P. Dale, Nov 12 2017 *)
Showing 1-3 of 3 results.
Comments