Original entry on oeis.org
53 is the reverse concatenation of the consecutive primes 3 and 5. 53 is prime.
-
revprime2(n) = { y=3; forprime(x=5,n, y=concat(Str(x),Str(y)); z=eval(y); if(ispseudoprime(z),print(x","z)) ) }
A092447
Concatenate odd primes in decreasing order.
Original entry on oeis.org
3, 53, 753, 11753, 1311753, 171311753, 19171311753, 2319171311753, 292319171311753, 31292319171311753, 3731292319171311753, 413731292319171311753, 43413731292319171311753, 4743413731292319171311753, 534743413731292319171311753, 59534743413731292319171311753
Offset: 1
Micha Fleuren (michafleuren(AT)hotmail.com), Mar 24 2004
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- M. Fleuren, Smarandache Back Concatenated Odd Primes
- H. Marimutha, Smarandache Concatenated Type Sequences, Bulletin of Pure and Applied Sciences, Vol. 16 E(No.2), 1997; p. 225-226.
- F. Smarandache, Collected papers, Vol. II, University of Kishinev, 1997.
-
Table[FromDigits[Flatten[IntegerDigits/@Reverse[Prime[Range[2,n]]]]],{n,2,21}] (* Harvey P. Dale, Mar 01 2023 *)
-
a(n)={fromdigits(concat([digits(k) | k<-Vecrev(primes(n+1))[1..n]]))} \\ Andrew Howroyd, Feb 12 2020
A099071
Composite numbers k such that the concatenation of all nonprime positive integers up to k in decreasing order is prime.
Original entry on oeis.org
4, 6, 8, 9, 26, 1752
Offset: 1
26 is a term: 26 is composite; nonprimes up to 26 are 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26; and 26252422212018161514121098641 is prime.
-
Do[If[ !PrimeQ[n]&&PrimeQ[(v={};Do[If[ !PrimeQ[n+1-j], v=Join[v, IntegerDigits[n+1-j]]], {j, n}];FromDigits[v])], Print[n]], {n, 6013}]
cnpQ[n_]:=PrimeQ[FromDigits[Flatten[IntegerDigits/@Select[Range[n,1,-1],!PrimeQ[#]&]]]]; Select[Range[1800],!PrimeQ[#]&&cnpQ[#]&] (* Harvey P. Dale, Jul 19 2020 *)
Original entry on oeis.org
3, 53, 171311753, 8983797371676159534743413731292319171311753
Offset: 1
Micha Fleuren (michafleuren(AT)hotmail.com), Mar 24 2004
-
t="";forprime(p=3,9999,ispseudoprime(t=eval(Str(p,t)))&print(t)) \\\\ - M. F. Hasler, Apr 05 2008
A099073
Numbers k such that the concatenation of the first k-1 odd primes in decreasing order is prime.
Original entry on oeis.org
2, 3, 7, 24, 76, 1100
Offset: 1
7 is in the sequence because the first 6 odd primes are 3,5,7,11,13,17 and 17.13.11.7.5.3 is prime (dot between numbers means concatenation).
-
Do[If[PrimeQ[(v={};Do[v=Join[v, IntegerDigits[Prime[n-j+1]]], {j, n-1}];FromDigits[v])], Print[n]], {n, 2, 4500}]
Select[Range[1100],PrimeQ[FromDigits[Flatten[IntegerDigits/@ Reverse[ Prime[ Range[ 2,#]]]]]]&] (* Harvey P. Dale, Nov 12 2017 *)
A164893
Base 10 representation of the string formed by appending primes in base 2.
Original entry on oeis.org
2, 11, 93, 751, 12027, 192445, 6158257, 197064243, 6306055799, 201793785597, 6457401139135, 413273672904677, 26449515065899369, 1692768964217559659, 108337213709923818223, 6933581677435124366325, 443749227355847959444859, 28399950550774269404471037
Offset: 1
The primes in base 2 (10, 11, 101, 111,...) concatenated by appending give the first four binary terms 10, 1011, 1011101, 1011101111; or 2, 11, 93, 751 base 10.
-
nn=20;With[{b2p=IntegerDigits[#,2]&/@Prime[Range[nn]]},Table[ FromDigits[ Flatten[ Take[b2p,n]],2],{n,nn}]] (* Harvey P. Dale, Mar 26 2013 *)
-
list(n)=my(p=primes(n),s);vector(n,i,s=s<<#binary(p[i])+p[i]) \\ Charles R Greathouse IV, Mar 26 2013
A178388
Concatenation of the first n primes written in base 3.
Original entry on oeis.org
2, 210, 21012, 2101221, 2101221102, 2101221102111, 2101221102111122, 2101221102111122201, 2101221102111122201212, 21012211021111222012121002, 210122110211112220121210021011, 2101221102111122201212100210111101
Offset: 1
a(4) = Concatenate[prime(1) base 3, prime(2) base 3, prime(3) base 3, prime(3) base 3] = Concatenate[2 base 3, 3 base 3, 5 base 3, 7 base 3] = Concatenate[2, 10, 12, 21] = 2101221.
-
Module[{nn=15,p3},p3=IntegerDigits[Prime[Range[nn]],3];Table[FromDigits[Flatten[ Take[p3,n]]],{n,nn}]] (* Harvey P. Dale, Aug 25 2022 *)
-
v = 0; for (n=1, 12, d = digits(prime(n), 3); v = v*10^#d + fromdigits(d); print1 (v ", ")) \\ Rémy Sigrist, Aug 07 2017
Showing 1-7 of 7 results.
Comments