cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099163 Expansion of (1-2*x^2)/((1-2*x)*(1+x-x^2)).

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 27, 49, 106, 199, 419, 804, 1663, 3237, 6618, 13003, 26383, 52156, 105299, 209001, 420586, 836991, 1680747, 3350548, 6718807, 13408957, 26864282, 53653539, 107428471, 214660524, 429638859, 858763489, 1718359018, 3435371767
Offset: 0

Views

Author

Paul Barry, Oct 01 2004

Keywords

Comments

Counts closed walks of length n at the vertex with loop of the graph with adjacency matrix A=[0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Binomial transform is A099164.
Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[ (.5'i + .5i' + .5'ii' + .5e)*(.5j' + .5'kk' + .5'ki' + .5e) ], 1vesforseq = A000079(n+2) (Dement)

Crossrefs

Cf. A039834.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x^2)/((1 - 2 x) (1 + x - x^2)), {x, 0, 33}], x] (* Michael De Vlieger, Sep 14 2022 *)
  • PARI
    a(n)=sum(k=-n\5,n\5,binomial(n,(n-5*k)\2)) \\ Paul D. Hanna, Jan 02 2009
    
  • PARI
    a(n)=-fibonacci(n+1)+2*sum(k=-n\10,n\10,binomial(n,n\2-5*k)) \\ Paul D. Hanna, Jan 02 2009

Formula

a(n)=a(n-1)+3a(n-2)-2a(n-3); a(n)=((sqrt(5)-1)/2)^n(3/10+sqrt(5)/10)+((-sqrt(5)-1)/2)^n(3/10-sqrt(5)/10)+2^(n+1)/5; a(n)=sum{k=0..n, (-1)^(n-k)Fib(n-k+1)(2^(k-1)+0^k/2-sum{j=0..k, C(k, j)j(-1)^j})}.
4*a(n+1) - a(n+3) = A039834(n) - Creighton Dement, Feb 25 2005
Contribution from Paul D. Hanna, Jan 02 2009: (Start)
a(n) = Sum_{k=-[n/5]..[n/5]} C(n, [(n-5*k)/2]).
a(n) = 2*Sum_{k=-[n/10]..[n/10]} C(n, [n/2]-5*k) - fibonacci(n+1). (End)
5*a(n) = 2^(n+1) + A061084(n+1), n>0. - R. J. Mathar, Sep 11 2019