cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099193 a(n) = n*(4*n^6 + 70*n^4 + 196*n^2 + 45)/315.

Original entry on oeis.org

0, 1, 14, 99, 476, 1765, 5418, 14407, 34232, 74313, 149830, 284075, 511380, 880685, 1459810, 2340495, 3644272, 5529233, 8197758, 11905267, 16970060, 23784309, 32826266, 44673751, 60018984, 79684825, 104642486, 136030779, 175176964, 223619261, 283131090, 355747103
Offset: 0

Views

Author

Jonathan Vos Post, Nov 16 2004

Keywords

Comments

Kim asserts that every nonnegative integer can be represented by the sum of no more than 21 of these numbers.
Starting with 1 = binomial transform of [1, 13, 72, 220, 400, 432, 256, 0, 0, 0, ...], where (1, 13, 72, 220, 400, 432, 256) = row 7 of the Chebyshev triangle A081277. Also = row 7 of the array in A142978. - Gary W. Adamson, Jul 19 2008

Crossrefs

Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099195 (m=8), A099196 (m=9), A099197 (m=10).
Cf. A000332.

Programs

  • Mathematica
    Table[SeriesCoefficient[x (1 + x)^6/(1 - x)^8, {x, 0, n}], {n, 0, 31}] (* Michael De Vlieger, Dec 14 2015 *)
  • PARI
    concat(0, Vec(x*(1+x)^6/(1-x)^8 + O(x^40))) \\ Michel Marcus, Dec 14 2015

Formula

a(n) = n*(4*n^6 + 70*n^4 + 196*n^2 + 45)/315.
G.f.: x*(1+x)^6/(1-x)^8. - R. J. Mathar, Jul 18 2009
a(n) = 14*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

Extensions

More terms from Michel Marcus, Dec 14 2015