cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A111129 Decimal expansion of the continued fraction 1+1/(1+2/(1+3/(1+4/(1+5/(1+...))))).

Original entry on oeis.org

1, 5, 2, 5, 1, 3, 5, 2, 7, 6, 1, 6, 0, 9, 8, 1, 2, 0, 9, 0, 8, 9, 0, 9, 0, 5, 3, 6, 3, 9, 0, 5, 7, 8, 7, 1, 3, 3, 0, 7, 1, 1, 6, 3, 6, 4, 9, 2, 0, 6, 0, 3, 3, 3, 5, 5, 4, 6, 3, 1, 3, 9, 4, 2, 4, 2, 7, 2, 2, 6, 9, 2, 5, 5, 0, 7, 9, 5, 0, 3, 1, 6, 8, 7, 0, 2, 2, 8, 0, 1, 1, 8, 2, 6, 7, 2, 1, 1, 6, 5, 5, 2, 1, 4, 0
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Tom Raes (tommy1729(AT)hotmail.com) and Steven Finch, Sep 22 2005

Keywords

Examples

			1.52513527616098120908909053639057871330711636492060333554631394242...
		

References

  • B. C. Berndt, Y.-S. Choi and S.-Y. Kang, The problems submitted by Ramanujan to the Journal of the Indian Mathematical Society, Continued Fractions: From Analytic Number Theory to Constructive Approximation, ed. B. C. Berndt and F. Gesztesy, Amer. Math. Soc., 1999, pp. 15-56.
  • S. R. Finch, "Mathematical Constants", Cambridge, pp. 423-428.
  • H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, 1948, pp. 356-358, 367

Crossrefs

Cf. A225435, A225436 (numerators and denominators of convergents to c.f.).

Programs

  • Mathematica
    RealDigits[1/(Sqrt[Pi*E/2]*Erfc[1/Sqrt[2]]), 10, 111][[1]]
  • PARI
    1/(sqrt(Pi*exp(1)/2)*erfc(1/sqrt(2))) \\ G. C. Greubel, Jan 24 2017

Formula

Equals the reciprocal of sqrt(pi*e/2)*erfc(1/sqrt(2)), where erfc is the complementary error function.

Extensions

More terms from Robert G. Wilson v and Hans Havermann, Oct 17 2005
Definition corrected by Steven Finch, Feb 05 2009

A099286 Decimal expansion of the error function at 1.

Original entry on oeis.org

8, 4, 2, 7, 0, 0, 7, 9, 2, 9, 4, 9, 7, 1, 4, 8, 6, 9, 3, 4, 1, 2, 2, 0, 6, 3, 5, 0, 8, 2, 6, 0, 9, 2, 5, 9, 2, 9, 6, 0, 6, 6, 9, 9, 7, 9, 6, 6, 3, 0, 2, 9, 0, 8, 4, 5, 9, 9, 3, 7, 8, 9, 7, 8, 3, 4, 7, 1, 7, 2, 5, 4, 0, 9, 6, 0, 1, 0, 8, 4, 1, 2, 6, 1, 9, 8, 3, 3, 2, 5, 3, 4, 8, 1, 4, 4, 8, 8, 8, 4, 5, 4, 1, 5, 8
Offset: 0

Views

Author

Robert G. Wilson v, Oct 08 2004

Keywords

Examples

			0.84270079294971486934122063508260925929606699796630290845993789783...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Erf[1], 10, 105][[1]]
  • PARI
    1 - erfc(1)

Formula

Equals 1-A099287.
Equals (1/e) Sum_{n >= 0} (1/(n/2)!) - 1. - Jean-François Alcover, Jun 14 2020
From Amiram Eldar, Jul 22 2020: (Start)
Equals (2/sqrt(Pi)) * Integral_{x=0..1} exp(-x^2) dx.
Equals (2/sqrt(Pi)) * Sum_{k>=0} (-1)^k/(k! * (2*k + 1)) = (2/sqrt(Pi)) * Sum_{k>=0} (-1)^k/A007680(k).
Equals (1/e) * Sum_{k>=1} 1/Gamma(k + 1/2). (End)

A257526 Decimal expansion of e*Pi*erfc(1).

Original entry on oeis.org

1, 3, 4, 3, 2, 9, 3, 4, 2, 1, 6, 4, 6, 7, 3, 5, 1, 7, 0, 4, 3, 7, 1, 2, 3, 5, 9, 4, 4, 1, 0, 5, 8, 9, 7, 7, 8, 3, 2, 2, 8, 2, 9, 5, 6, 7, 1, 3, 0, 0, 3, 6, 8, 7, 2, 0, 5, 1, 9, 5, 5, 5, 6, 4, 5, 5, 3, 0, 2, 5, 8, 2, 7, 9, 6, 9, 7, 2, 7, 7, 5, 7, 9, 8, 4, 1, 3, 3, 5, 0, 0, 7, 6, 5, 4, 8, 8, 0, 0, 2, 5, 4, 9
Offset: 1

Views

Author

Jean-François Alcover, Apr 28 2015

Keywords

Examples

			1.343293421646735170437123594410589778322829567130036872051955564553...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E*Pi*Erfc[1], 10, 103] // First
  • PARI
    exp(1)*Pi*erfc(1) \\ Charles R Greathouse IV, Apr 18 2016

Formula

Equals Integral_{-infinity..infinity} exp(-x^2)/(1+x^2) dx.
Also equals J(0) where J(c) = Integral_{-infinity..infinity} exp(-(x-c)^2)/(1+x^2) dx = (1/2)*Pi*e*(erfc[1-c*i]*e^(-2*c*i) + erfc[1+c*i]*e^(2*c*i)), where the integrand comes from a shifted normal PDF times a Cauchy PDF.
Equals 2 * Integral_{x=0..Pi/2} exp(-tan(x)^2) dx. - Amiram Eldar, Aug 07 2020

A364618 Decimal expansion of Sum_{k>=0} erfc(k), where erfc(x) is the complementary error function.

Original entry on oeis.org

1, 1, 6, 1, 9, 9, 9, 0, 4, 7, 9, 4, 7, 1, 2, 6, 3, 6, 3, 5, 3, 2, 3, 0, 8, 3, 2, 2, 4, 5, 5, 7, 9, 7, 1, 7, 1, 1, 6, 6, 3, 4, 3, 5, 0, 6, 2, 2, 5, 8, 6, 8, 0, 3, 1, 2, 1, 6, 8, 2, 6, 3, 3, 2, 4, 1, 5, 9, 4, 1, 7, 5, 5, 0, 4, 9, 4, 0, 0, 2, 3, 8, 6, 4, 7, 8, 1, 3, 2, 8, 3, 6, 2, 6, 2, 8, 9, 3, 3, 5, 1, 8, 4, 4, 7
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2023

Keywords

Examples

			1.16199904794712636353230832245579717116634350622586...
		

Crossrefs

Cf. A099287.

Programs

  • Maple
    evalf(sum(erfc(k), k = 0 .. infinity), 120)
  • Mathematica
    RealDigits[N[Sum[Erfc[k], {k, 0, Infinity}], 120]][[1]]
  • PARI
    sumpos(k = 0, erfc(k))

Formula

Equals 1 + (2/Pi) * Integral_{x>=1} floor(x) * exp(-x^2) dx.
Equals 1/2 + 1/sqrt(Pi) + (4/sqrt(Pi)) * Sum_{k>=1} D(Pi*k)/(Pi*k), where D(x) is the Dawson function.
Equals (2/Pi)*Integral_{x=0..oo} (exp(x) - cos(x))*sin((x^2)/2)/(x*(cosh(x) - cos(x))) dx. - Velin Yanev, Oct 11 2024
Showing 1-4 of 4 results.