cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A111188 Ordinary continued fraction expansion of the continued fraction 1+1/(1+2/(1+3/(1+4/(1+5/(1+...)))))... (see A111129 for more information).

Original entry on oeis.org

1, 1, 1, 9, 2, 4, 6, 1, 7, 1, 14, 3, 2, 1, 3, 1, 7, 3, 1, 2, 119, 6, 3, 5, 1, 15, 3, 5, 1, 4, 3, 1, 1, 4, 2, 2, 3, 2, 1, 7, 1, 2, 19, 1, 3, 1, 5, 7, 4, 1, 7, 1, 12, 1, 8, 3, 1, 4, 2, 3, 5, 7, 1, 1, 2, 2, 1, 1, 122, 1, 9, 1, 4, 44, 2, 1, 16, 6, 8, 44, 1, 1, 4, 1, 7, 1, 2, 1, 3, 2, 58, 1, 6
Offset: 0

Views

Author

Hans Havermann, Oct 19 2005

Keywords

Crossrefs

Cf. A111129 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[2/(Pi*E)]/Erfc[1/Sqrt[2]], 126]

Extensions

Definition corrected by Steven Finch, Feb 07 2009
Offset changed by Andrew Howroyd, Aug 03 2024

A180048 Coefficient triangle of the denominators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... . Conjectured to equal unsigned version of A137286.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 8, 0, 9, 0, 1, 0, 33, 0, 14, 0, 1, 48, 0, 87, 0, 20, 0, 1, 0, 279, 0, 185, 0, 27, 0, 1, 384, 0, 975, 0, 345, 0, 35, 0, 1, 0, 2895, 0, 2640, 0, 588, 0, 44, 0, 1, 3840, 0, 12645, 0, 6090, 0, 938, 0, 54, 0, 1, 0, 35685, 0, 41685, 0, 12558, 0, 1422, 0, 65
Offset: 0

Views

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!).
From Alexander Kreinin, Oct 26 2015: (Start)
Let us denote the continued fraction by U(w).
Then it is easy to show that Mill's ratio, R(w) = (1 - Phi(w))/f(w), where Phi is the standard normal distribution function and f is the standard normal density function, satisfies R(w) = 1/(w + U(w)).
Indeed, R(w) = 1/(w+1/(w+2/(w+3/(w+... Then we find U(w) = 1/R(w) - w. It was proved in Alexander Kreinin (arXiv:1405.5852) that R(w+t) + Q(w, t) = exp(w*t + w^2/2)*R(t), where Q(w,t) = Sum_{k>=0} Sum_{m=0..k} q(k,m) * t^m * w^(k+1)/(k+1)!.
Substituting t=0, we obtain R(w) = exp(w^2/2)*sqrt(Pi/2) - Sum_{n>=0} w^(2n+1)/(2n+1)!!. If w=1 we obtain Ramanujan's formula. (End)

Examples

			The denominator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 48 + 87w^2 + 20w^4 + w^6.
From _Joerg Arndt_, Apr 20 2013: (Start)
Triangle begins
     1;
     0,     1;
     2,     0,     1;
     0,     5,     0,     1;
     8,     0,     9,     0,    1;
     0,    33,     0,    14,    0,   1;
    48,     0,    87,     0,   20,   0,   1;
     0,   279,     0,   185,    0,  27,   0,  1;
   384,     0,   975,     0,  345,   0,  35,  0,  1;
     0,  2895,     0,  2640,    0, 588,   0, 44,  0, 1;
  3840,     0, 12645,     0, 6090,   0, 938,  0, 54, 0, 1;
     0, 35685,     0, 41685,    0, ... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[ CoefficientList[ Denominator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 16} ] (* or equivalently *) Clear[ p ];p[ 0 ]=1; p[ 1 ]=w; p[ n_ ]:=p[ n ]= w*p[ n-1 ] + n*p[ n-2 ]; Table[ CoefficientList[ p[ k ]//Expand, w ], {k,0,15} ]

Formula

p(0)=1; p(1)=w; p(n) = w*p(n-1) + n*p(n-2) (conjecture).
T(n,k) = T(n-1,k-1) + n*T(n-2,k), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1. - Philippe Deléham, Oct 28 2013
sum_{k=0..n} T(n,k) = A000932(n). - Philippe Deléham, Oct 28 2013
T(2n,0) = A000165(n); T(2n+1,1) = A129890(n); T(2n+2,2) = A035101(n+2). - Philippe Deléham, Oct 28 2013

A108088 Decimal expansion of 1/(1+1/(1+2/(1+3/(1+4/(1+5/(1+...)))))).

Original entry on oeis.org

6, 5, 5, 6, 7, 9, 5, 4, 2, 4, 1, 8, 7, 9, 8, 4, 7, 1, 5, 4, 3, 8, 7, 1, 2, 3, 0, 7, 3, 0, 8, 1, 1, 2, 8, 3, 3, 9, 9, 2, 8, 2, 3, 3, 2, 8, 7, 0, 4, 6, 2, 0, 2, 8, 0, 5, 3, 6, 8, 6, 1, 5, 8, 7, 3, 4, 1, 9, 7, 1, 6, 5, 7, 6, 6, 3, 1, 0, 5, 8, 9, 0, 6, 5, 8, 5, 0, 9, 5
Offset: 0

Views

Author

Philippe Deléham, Jun 21 2005

Keywords

Comments

Term of Ramanujan's formula (see A059444 and A060196).

Examples

			0.6556795424187984715438712307308112833992823328704...
		

References

  • S. R. Finch, "Mathematical Constants", Cambridge, pp. 423-428.

Crossrefs

Cf. A111129.

Programs

  • Mathematica
    RealDigits[Sqrt[Pi*E/2]*Erfc[1/Sqrt[2]], 10, 111][[1]]
  • PARI
    sqrt(Pi*exp(1)/2)*erfc(1/sqrt(2)) \\ G. C. Greubel, Feb 03 2017

Formula

Equals sqrt(Pi*e/2)*erfc(1/sqrt(2)), where erfc is the complementary error function. - Daniel Forgues, Apr 14 2011
Also equals Integral_{-infinity..infinity} (1/sqrt(2*Pi))*exp(-x^2/2)/(1+x^2) dx, where the integrand is normal PDF times Cauchy PDF. - Jean-François Alcover, Apr 28 2015

A225435 Numerators of convergents to the general continued fraction 1/(1 + 2/(1 + 3/(1 + 4/(1+ ...)))).

Original entry on oeis.org

1, 1, 2, 4, 7, 19, 68, 44, 416, 758, 6092, 24284, 10348, 110864, 997828, 4545476, 827252, 5166356, 255994804, 1289266004, 3332578444, 8757252244, 3766552348, 27079574548, 1434303566956, 4061479240156, 46849154788124, 54858398447372, 816458740546228, 189647639388428
Offset: 1

Views

Author

Eric W. Weisstein, May 07 2013

Keywords

Examples

			1, 1/3, 2/3, 4/9, 7/12, 19/39, ... = A225435(n)/A225436(n).
		

Crossrefs

Cf. A225436 (denominators).
Cf. A111129 (decimal digits of infinite c.f.).
Related to A000932.

Programs

  • Mathematica
    Numerator[Table[ContinuedFractionK[k, 1, {k, 1, n}], {n, 30}]]

Formula

E.g.f.: (1/2)*(-2+e^((1/2)*z*(2+z))*(1+z)(2+sqrt(2*e*Pi)*erf(1/sqrt(2)))-e^((1/2)*(1+z)^2)*sqrt(2*Pi)*(1+z)*erf((1+z)/sqrt(2))).
Lim_{n->infinity} A225435(n)/A225436(n) = sqrt(2/(e*Pi))/erfc(1/sqrt(2))-1 = A111129.

A225436 Denominators of convergents to the general continued fraction 1/(1 + 2/(1 + 3/(1 + 4/(1+ ...)))).

Original entry on oeis.org

1, 3, 3, 9, 12, 39, 123, 87, 771, 1473, 11427, 46779, 19533, 212559, 1890093, 8691981, 1570137, 9863961, 486463449, 2459255649, 6337494039, 16694653089, 7166066763, 51605000913, 2729643372111, 7738039298811, 89176449644619, 104501330075607, 1554311845035993, 361227369257943
Offset: 1

Views

Author

Eric W. Weisstein, May 07 2013

Keywords

Comments

1

Examples

			1, 1/3, 2/3, 4/9, 7/12, 19/39, ... = A225435(n)/A225436(n).
		

Crossrefs

Cf. A225435 (numerators).
Cf. A111129 (decimal digits of infinite c.f.).
Related to A000932.

Programs

  • Mathematica
    Denominator[Table[ContinuedFractionK[k, 1, {k, 1, n}], {n, 30}]]

Formula

E.g.f: (1/2)*(2+e^((1/2)*(1+z)^2)*sqrt(2*Pi)*(1+z)*(-erf(1/sqrt(2))+erf((1+z)/sqrt(2)))).
Limit_{n->oo} A225435(n)/a(n) = sqrt(2/(e*Pi))/erfc(1/sqrt(2))-1 = A111129.

A005831 a(n+1) = a(n) * (a(n-1) + 1).

Original entry on oeis.org

0, 1, 1, 2, 4, 12, 60, 780, 47580, 37159980, 1768109008380, 65702897157329640780, 116169884340604934905464739377180, 7632697963609645128663145969343357330533515068777580, 886689639639303288926299195509965193299034793881606681727875910370940270908216401980
Offset: 0

Views

Author

Keywords

Comments

A discrete analog of the derivative of t(x) = tetration base e, since t'(x) = t(x) * t(x-1) * t(x-2) * ... y = y * exp(y) * exp(exp(y)) * ... * t(x) This sequence satisfies almost the same equation but the derivative is replaced by a difference, comparable to the relations between differential equations and their associated difference equations. - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Examples

			a(5) = 12 since 12 = 1*2*4 + 4.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005831 n = a005831_list !! n
    a005831_list = 0:1:zipWith (*) (tail a005831_list) (map succ a005831_list)
    -- Reinhard Zumkeller, Mar 19 2011
  • Mathematica
    a=0;b=1;lst={a,b};Do[c=a*b+b;AppendTo[lst,c];a=b;b=c,{n,18}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1](a[n-2]+1)},a,{n,15}] (* Harvey P. Dale, Aug 17 2013 *)

Formula

a(0) = a(1) = 1, a(2) = 2; a(n) = a(n-1)*a(n-2)*a(n-3)*... + a(n-1). - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008
The sequence grows like a doubly exponential function, similar to Sylvester's sequence. In fact we have the asymptotic form : a(n) ~ e ^ (Phi ^ n) where e and Phi are the best possible constants. - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A141435 a(1) = 1, a(2) = 2; a(n) = a(n-a(1)) + a(n-a(2)) + a(n-a(3)) + a(n-a(4)) + ...

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 38, 71, 132, 247, 461, 861, 1609, 3005, 5613, 10485, 19584, 36581, 68330, 127632, 238404, 445314, 831798, 1553712, 2902170, 5420945, 10125754, 18913838, 35329048, 65990929, 123264078, 230244265, 430071949, 803328933
Offset: 1

Views

Author

Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Keywords

Comments

Thus we get a self-reference sequence that grows exponentially. a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-6) + a(n-11) + a(n-20) + ...
A Fibonacci-like sequence, even closer to the tribonacci numbers.
Lim n-> oo log (a(n))/n converges.

Examples

			a(6) = 20 because 20 = a(5) + a(4) + a(3) = 11 + 6 + 3
a(8) = 71 because 71 = a(7) + a(6) + a(5) + a(2) = 38 + 20 + 11 + 2
		

Crossrefs

Programs

  • Maple
    A141435 := proc(n) option remember; local a,i; if n <= 3 then RETURN(n); else a :=0 ; for i from 1 to n-1 do if n-procname(i) < 1 then RETURN(a); else a := a+procname(n-procname(i)) ; fi; od; RETURN(a); fi; end: for n from 1 to 80 do printf("%d,",A141435(n)) ; od: # R. J. Mathar, Nov 03 2008
  • Python
    def A141435(terms):
        seq = [1, 2]
        for n in range(3, terms):
            s = 0
            for m in seq:
                if (n - m) > 0:
                    s += seq[n - m - 1] #fix for python indexing
            seq.append(s)
        return seq
    print(A141435(40)) # Andres Cruz y Corro A, Jun 19 2019

Extensions

More terms from R. J. Mathar, Nov 03 2008

A246822 Decimal expansion of the expected value of the function max(x-1,0) with respect to the normal distribution (with zero mean and unit standard deviation).

Original entry on oeis.org

0, 8, 3, 3, 1, 5, 4, 7, 0, 5, 8, 7, 6, 8, 6, 2, 9, 8, 3, 8, 3, 0, 6, 2, 7, 3, 8, 5, 6, 7, 5, 9, 8, 5, 7, 7, 3, 0, 6, 5, 8, 4, 9, 3, 7, 4, 6, 4, 0, 3, 9, 4, 1, 6, 4, 7, 4, 9, 4, 9, 5, 3, 4, 5, 2, 4, 0, 9, 1, 5, 0, 5, 5, 5, 7, 2, 8, 8, 1, 2, 4, 0, 0, 9, 1, 9, 6, 2, 1, 3, 0, 9, 9, 5, 8, 1, 7, 3, 2, 2, 5, 7, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 04 2014

Keywords

Examples

			0.083315470587686298383062738567598577306584937464...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[1/Sqrt[2*E*Pi] - (1/2)*Erfc[1/Sqrt[2]], 10, 102] // First]
  • PARI
    1/sqrt(2*exp(1)*Pi) - (1/2)*erfc(1/sqrt(2)) \\ Michel Marcus, Sep 04 2014

Formula

1/sqrt(2*e*Pi) - (1/2)*erfc(1/sqrt(2)).
Also equals A240717*(1 - 1/A111129).
Showing 1-8 of 8 results.