cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099302 Number of integer solutions to x' = n, where x' is the arithmetic derivative of x.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 3, 0, 2, 1, 2, 2, 3, 0, 4, 1, 3, 1, 2, 0, 3, 2, 4, 1, 4, 0, 4, 0, 2, 2, 3, 1, 4, 1, 4, 2, 4, 0, 6, 1, 4, 1, 3, 0, 5, 2, 4, 0, 4, 1, 7, 2, 3, 1, 5, 0, 6, 0, 3, 1, 5, 2, 7, 1, 5, 3, 5, 1, 7, 0, 6, 2, 5, 0, 8, 1, 5, 2, 4, 0, 9, 3, 6, 0, 5, 1, 8, 0, 3, 1, 6, 2, 8, 2, 5, 1, 6
Offset: 2

Views

Author

T. D. Noe, Oct 12 2004, Apr 24 2011

Keywords

Comments

This is the i(n) function in the paper by Ufnarovski and Ahlander. Note that a(1) is infinite because all primes satisfy x' = 1. The plot shows the great difference in the number of solutions for even and odd n. Also compare sequence A189558, which gives the least number have n solutions, and A189560, which gives the least such odd number.
It appears that there are a finite number of even numbers having a given number of solutions. This conjecture is explored in A189561 and A189562.

References

Crossrefs

Cf. A002620, A003415 (arithmetic derivative of n), A099303 (greatest x such that x' = n), A098699 (least x such that x' = n), A098700 (n such that x' = n has no integer solution), A239433 (n such that x' = n has at least one solution).
Cf. A002375 (a lower bound for even n), A369054 (a lower bound for n of the form 4m+3).

Programs

  • Haskell
    a099302 n = length $ filter (== n) $ map a003415 [1 .. a002620 n]
    -- Reinhard Zumkeller, Mar 18 2014
    
  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Table[Count[d1, n], {n, 2, 400}]
  • PARI
    up_to = 100000; \\ A002620(10^5) = 2500000000
    A002620(n) = ((n^2)>>2);
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A099302list(up_to) = { my(d,c,v=vector(up_to)); for(i=1, A002620(up_to), d = A003415(i); if(d>1 && d<=up_to, v[d]++)); (v); };
    v099302 = A099302list(up_to);
    A099302(n) = v099302[n]; \\ Antti Karttunen, Jan 21 2024
  • Python
    from sympy import factorint
    def A099302(n): return sum(1 for m in range(1,(n**2>>2)+1) if sum((m*e//p for p,e in factorint(m).items())) == n) # Chai Wah Wu, Sep 12 2022
    

Formula

a(A098700(n)) = 0; a(A239433(n)) > 0. - Reinhard Zumkeller, Mar 18 2014
From Antti Karttunen, Jan 21 2024: (Start)
a(n) = Sum_{i=1..A002620(n)} [A003415(i)==n], where [ ] is the Iverson bracket.
a(2n) >= A002375(n), a(2n+1) >= A369054(2n+1).
(End)