A099365 Squares of A052918(n-1) (generalized Fibonacci).
0, 1, 25, 676, 18225, 491401, 13249600, 357247801, 9632441025, 259718659876, 7002771375625, 188815108482001, 5091005157638400, 137268324147754801, 3701153746831741225, 99793882840309258276, 2690733682941518232225
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..650
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (26,26,-1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
[(2/29)*(Evaluate(ChebyshevFirst(n), 27/2) -(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 21 2022
-
Maple
with (combinat):seq(fibonacci(n,5)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008
-
Mathematica
LinearRecurrence[{26,26,-1},{0,1,25},30] (* Harvey P. Dale, Sep 25 2019 *)
-
SageMath
def A099365(n): return (2/29)*(chebyshev_T(n, 27/2) - (-1)^n) [A099365(n) for n in (0..30)] # G. C. Greubel, Aug 21 2022
Formula
a(n) = A052918(n-1)^2, n >= 1, a(0) = 0.
a(n) = 26*a(n-1) + 26*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=25.
a(n) = 27*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = 2*(T(n, 27/2) - (-1)^n)/29 with twice the Chebyshev's T(n, x) polynomials of the first kind. 2*T(n, 27/2) = A090248(n).
G.f.: x*(1-x)/((1-27*x+x^2)*(1+x)) = x*(1-x)/(1-26*x-26*x^2+x^3).
a(n) = (1 - (-1)^n)/2 + 25*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Mar 30 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (5 + sqrt(29))/10 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024
Comments