A099370 Chebyshev polynomial of the first kind, T(n,x), evaluated at x=33.
1, 33, 2177, 143649, 9478657, 625447713, 41270070401, 2723199198753, 179689877047297, 11856808685922849, 782369683393860737, 51624542295308885793, 3406437421806992601601, 224773245296966202819873
Offset: 0
Examples
a(1)^2 - 17*A121470(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Pell Equation
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (66,-1).
Programs
-
Mathematica
LinearRecurrence[{66, -1},{1, 33},14] (* Ray Chandler, Aug 11 2015 *)
-
PARI
\\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...]. print1("1, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[1,1],", ")) \\ Rick L. Shepherd, Jul 31 2006
-
PARI
vector(20,n,polchebyshev(n-1,1,33)) \\ Joerg Arndt, Jan 01 2021
Formula
a(n) = 66*a(n-1) - a(n-2), a(-1):= 33, a(0)=1.
a(n) = T(n, 33) = (S(n, 66)-S(n-2, 66))/2 = S(n, 66)-33*S(n-1, 66) with T(n, x), resp. S(n, x), Chebyshev polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 66) = A097316(n).
a(n) = ((33+8*sqrt(17))^n + (33-8*sqrt(17))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*33)^(n-2*k), for n>=1, a(0)=1.
G.f.: (1-33*x)/(1-66*x+x^2).
Extensions
A-number for y values in Pell equation corrected by Wolfdieter Lang, Jun 28 2013
Comments