A099397 Chebyshev polynomial of the first kind, T(n,x), evaluated at x=51.
1, 51, 5201, 530451, 54100801, 5517751251, 562756526801, 57395647982451, 5853793337683201, 597029524795704051, 60891157735824130001, 6210301059529265556051, 633389816914249262587201
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..497
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (102, -1).
Crossrefs
Row 5 of array A188645.
Programs
-
Magma
[n: n in [1..1000] |IsSquare(26*(n^2-1))] // Vincenzo Librandi, Nov 17 2010
-
Mathematica
LinearRecurrence[{102, -1},{1, 51},13] (* Ray Chandler, Aug 11 2015 *)
-
PARI
a(n) = polchebyshev(n, 1, 51); \\ Michel Marcus, Jan 20 2018
Formula
a(n) = 102*a(n-1) - a(n-2), n>=1; a(-1):= 51, a(0)=1.
a(n) = T(n, 51) = (S(n, 102)-S(n-2, 102))/2 = S(n, 102)-51*S(n-1, 102) with T(n, x), resp. S(n, x), Chebyshev polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 102)=(n).
a(n) = (ap^n + am^n)/2 with ap := 51+10*sqrt(26) and am := 51-10*sqrt(26).
a(n) = Sum_{k=0..floor(n/2)} (((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*51)^(n-2*k)), n >= 1. a(0):=1.
G.f.: (1 - 51*x)/(1 - 102*x + x^2).
Comments