cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099429 A Jacobsthal-Lucas convolution.

Original entry on oeis.org

0, 0, 2, 3, 12, 25, 66, 147, 344, 765, 1710, 3751, 8196, 17745, 38234, 81915, 174768, 371365, 786438, 1660239, 3495260, 7340025, 15379122, 32156323, 67108872, 139810125, 290805086, 603979767, 1252698804, 2594876065, 5368709130, 11095332171, 22906492256
Offset: 0

Views

Author

Paul Barry, Oct 15 2004

Keywords

Comments

Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 02 2014
If we concatenate the lexicographically ordered bit strings of length n, then a(n) is the number of times 11 appears as a substring, if overlapping substrings are not considered as being separate. - John M. Campbell, Jan 18 2019

Examples

			G.f. = 2*x^2 + 3*x^3 + 12*x^4 + 25*x^5 + 66*x^6 + 147*x^7 + 344*x^8 + ...
If we concatenate the lexicographically ordered bit strings of length 4, we obtain the expression 0000000100100011010001010110011110001001101010111100110111101111, and we see that the substring 11 appears a total of a(4) = 12 times, with overlapping substrings not being considered as being separate. - _John M. Campbell_, Jan 18 2019
		

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!( x^2*(2-x)/(1-x-2*x^2)^2 )); // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    CoefficientList[Series[x^2*(2-x)/(1-x-2x^2)^2, {x, 0, 32}], x] (* Michael De Vlieger, Jan 18 2019 *)
  • PARI
    {a(n) = if( n>=0, polcoeff( x^2*(2-x)/((1+x)*(1-2*x))^2 + x*O(x^n), n), polcoeff( x*(1-2*x)/((1+x)*(2-x))^2 + x*O(x^-n), -n) )}; /* Michael Somos, Jun 02 2014 */
    
  • Sage
    (x^2*(2-x)/(1-x-2*x^2)^2).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019

Formula

G.f.: x^2*(2-x)/(1-x-2*x^2)^2. [Typo corrected by Colin Barker, Jun 16 2012]
a(n) = Sum_{k=0..n} J(n-k)*(2^(k-1) -(-1)^k +0^k/2).
a(n) = Sum_{k=0..n+1} J(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
a(n) = A036289(n)/6 +(-1)^n*n/3. - R. J. Mathar, Sep 21 2012
a(-n) = (-2)^(-n-1) * A193449(n) for all n in Z. - Michael Somos, Jun 02 2014