cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066421 a(n) = least k > 0 such that sigma^(k)(n) + 1 is prime, if such k exists; otherwise 0, where sigma^(k) denotes application of sigma k times.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 4, 3, 4, 1, 1, 1, 3, 2, 2, 5, 1, 5, 2, 1, 4, 1, 2, 1, 5, 1, 1, 4, 1, 1, 4, 3, 9, 4, 9, 2, 2, 1, 4, 3, 1, 1, 9, 8, 1, 1, 9, 8, 5, 4, 1, 5, 4, 3, 1, 3, 4, 3, 1, 4, 2, 1, 2, 4, 8, 3, 2, 1, 1, 3, 1, 2, 3, 2, 8, 2, 1, 4, 4, 3, 4, 1, 8, 7, 1, 2, 3, 1, 3, 2, 1, 4, 3, 3, 3, 4, 5, 4, 1, 2
Offset: 1

Views

Author

Joseph L. Pe, Dec 26 2001

Keywords

Comments

Does the orbit of the arithmetical dynamical system f(n) = sigma(n) contain one less than a prime, for every initial point n? That is to say, is a(n) nonzero for every n?
a(n) > 0 for all n < 36090. If a(36090) > 0, it is > 159. - Gabriel Cunningham (gcasey(AT)mit.edu), Oct 15 2004
a(n) > 0 for all n <= 675000 and a(36090)=291. - Sean A. Irvine, Oct 15 2023

Examples

			sigma(sigma(sigma(8))) + 1 = sigma(sigma(15)) + 1 = sigma(24) + 1 = 60 + 1 = 61, a prime; hence a(8) = 3.
		

Crossrefs

Programs

  • Mathematica
    A066421[n_]:=Length[NestWhileList[DivisorSigma[1,#]&,DivisorSigma[1,n],!PrimeQ[#+1]&]];Array[A066421,100] (* Paolo Xausa, Oct 16 2023 *)
  • PARI
    A066421(n) = { my(k=1,s=sigma(n)); while(!isprime(1+s),k++;s = sigma(s)); k; }; \\ Antti Karttunen, Nov 07 2017

Extensions

More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 15 2004
Description clarified by Antti Karttunen, Nov 07 2017

A099433 Numbers n such that A066421(k) < A066421(n) for all k < n.

Original entry on oeis.org

1, 2, 4, 33, 111, 603, 804, 1153, 12759, 36090, 114913
Offset: 1

Views

Author

Gabriel Cunningham (gcasey(AT)mit.edu), Oct 15 2004

Keywords

Comments

If A066421(36090) > 0, then it is > 159 and 36090 is the next term in the sequence.
A066421(36090) = 291. A066421(114913) = 292. [From Donovan Johnson, Nov 22 2008]

Crossrefs

Extensions

a(10)-a(11) from Donovan Johnson, Nov 22 2008
Showing 1-2 of 2 results.