A099445 An Alexander sequence for the Miller Institute knot.
1, 3, 6, 12, 25, 54, 117, 252, 542, 1167, 2514, 5415, 11662, 25116, 54093, 116502, 250913, 540396, 1163862, 2506635, 5398594, 11627067, 25041462, 53932332, 116155217, 250165974, 538787805, 1160398812, 2499175726, 5382528183
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dror Bar-Natan, The Rolfsen Knot Table
- Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-1).
Crossrefs
Cf. A001906.
Programs
-
Magma
I:=[1,3,6,12,25,54,117,252]; [n le 8 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
Mathematica
CoefficientList[Series[(1 - x) (x + 1) (x^2 + 1)/(x^4 - 3 x^3 + 3 x^2 - 3 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *) LinearRecurrence[{3,-3,3,-1},{1,3,6,12,25},30] (* Harvey P. Dale, Jun 24 2018 *)
-
PARI
Vec(-(x-1)*(x+1)*(x^2+1)/(x^4-3*x^3+3*x^2-3*x+1) + O(x^100)) \\ Colin Barker, Feb 10 2014
Formula
G.f.: -(x-1)*(x+1)*(x^2+1) / (x^4-3*x^3+3*x^2-3*x+1). - Colin Barker, Feb 10 2014
a(n) = 3*a(n-1)-3*a(n-2)+3*a(n-3)-a(n-4) for n>4. - Colin Barker, Feb 10 2014
Extensions
G.f. corrected by Colin Barker, Feb 10 2014
Comments