cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099475 Number of divisors d of n such that d+2 is also a divisor of n.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 2, 1, 0, 1, 0, 1, 1, 0, 0, 4, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 4, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 5, 0, 0, 2, 1, 0, 1, 0, 1, 1, 1, 0, 4, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 0, 4, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 4, 0, 0, 2, 1, 0, 1, 0, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 18 2004

Keywords

Comments

Number of r X s rectangles with integer sides such that r < s, r + s = 2n, r | s and (s - r) | (s * r). - Wesley Ivan Hurt, Apr 24 2020

Crossrefs

Cf. A007862 (similar but with d+1 instead).

Programs

  • Maple
    A099475:= proc(n)
    local d;
      d:= numtheory:-divisors(n);
    nops(d intersect map(`+`,d,2))
    end proc:
    map(A099475,[$1..1000]); # Robert Israel, Jun 19 2015
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Divisible[n, #+2]]&]; Array[a, 105] (* Jean-François Alcover, Dec 07 2015 *)
  • PARI
    A099475(n) = { sumdiv(n, d, ! (n % (d+2))) } \\ Michel Marcus, Jun 18 2015

Formula

0 <= a(n) <= a(m*n) for all m>0;
a(A099477(n)) = 0; a(A059267(n)) > 0;
a(A099476(n)) = n and a(m) <> n for m < A099476(n).
For n>0: a(A008585(n))>0, a(A008586(n))>0 and a(A008588(n))>0.
a(n) = Sum_{i=1..n-1} chi((2*n-i)/i) * chi(i*(2*n-i)/(2*n-2*i)), where chi(n) = 1 - ceiling(n) + floor(n). - Wesley Ivan Hurt, Apr 24 2020