cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A024012 a(n) = 2^n - n^2.

Original entry on oeis.org

1, 1, 0, -1, 0, 7, 28, 79, 192, 431, 924, 1927, 3952, 8023, 16188, 32543, 65280, 130783, 261820, 523927, 1048176, 2096711, 4193820, 8388079, 16776640, 33553807, 67108188, 134216999, 268434672, 536870071, 1073740924, 2147482687, 4294966272, 8589933503, 17179868028, 34359737143
Offset: 0

Views

Author

Keywords

Comments

The sequence 2^(n-2) - (n-2)^2, n=7,8,... enumerates the number of non-isomorphic sequences of length n, with entries from {1,2,3} and no two adjacent entries the same, that contain each of the thirteen rankings of three players (111, 121, 112, 211, 122, 212, 221, 123, 132, 213, 231, 312, 321) as embedded order isomorphic subsequences. See the arXiv paper below for proof. If n=7, these sequences are 1213121, 1213212, 1231213, 1231231,1231321, 1232123, and 1232132, and for each case, there are 3!=6 isomorphs. - Anant Godbole, Feb 20 2013

References

  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 92.

Crossrefs

Cf. A072180 (2^n - n^2 is prime), A075896 (primes of the form 2^n - n^2), A099481 (2^n - n^2 is a semiprime), A099482 (semiprimes of the form 2^n - n^2).

Programs

Formula

G.f.: (1 - 4*x + 4*x^2 + x^3)/((1 - 2*x)*(1 - x)^3). - Vincenzo Librandi, Jul 13 2012
a(n) = 5*a(n - 1) - 9*a(n - 2) + 7*a(n - 3) - 2*a(n - 4). - Vincenzo Librandi, Jul 13 2012

Extensions

More terms from Hugo Pfoertner, Oct 18 2004

A099482 Semiprimes of the form 2^k - k^2.

Original entry on oeis.org

1927, 8023, 32543, 2096711, 8388079, 137438952103, 549755812367, 2199023253871, 8796093020359, 140737488353119, 562949953418911, 36028797018960943, 147573952589676408439, 37778931862957161703943
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Examples

			a(2) = 8023 because 8023 = 71*113 = 2^13 - 13^2 = 2^A099481(2) - A099481(2)^2.
		

Crossrefs

Cf. A024012 2^n-n^2, A099481 2^k-k^2 is a semiprime, A072180 2^k-k^2 is prime, A075896 primes of the form 2^k-k^2.

Programs

  • Mathematica
    Select[Table[2^n - n^2, {n, 100}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)
Showing 1-2 of 2 results.