A099503 Expansion of 1/(1-4*x+x^3).
1, 4, 16, 63, 248, 976, 3841, 15116, 59488, 234111, 921328, 3625824, 14269185, 56155412, 220995824, 869714111, 3422701032, 13469808304, 53009519105, 208615375388, 820991693248, 3230957253887, 12715213640160, 50039862867392
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,0,-1).
Programs
-
Magma
[n le 3 select 4^(n-1) else 4*Self(n-1) -Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 03 2023
-
Mathematica
CoefficientList[Series[1/(1-4x+x^3),{x,0,30}],x] (* Harvey P. Dale, Apr 01 2011 *) LinearRecurrence[{4,0,-1}, {1,4,16}, 30] (* G. C. Greubel, Aug 03 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A099503 if (n<3): return 4^n else: return 4*a(n-1) - a(n-3) [a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023
Formula
a(n) = 4*a(n-1) - a(n-3).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*4^(n-3*k).
Comments