A099504 Expansion of 1/(1-5*x+x^3).
1, 5, 25, 124, 615, 3050, 15126, 75015, 372025, 1844999, 9149980, 45377875, 225044376, 1116071900, 5534981625, 27449863749, 136133246845, 675131252600, 3348206399251, 16604898749410, 82349362494450, 408398606072999
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,0,-1).
Programs
-
Magma
[n le 3 select 5^(n-1) else 5*Self(n-1) -Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 03 2023
-
Maple
A099504:=n->sum(binomial(n-2*i, i)*(-1)^i*5^(n-3*i), i=0..floor(n/3)); seq(A099504(n), n=0..30); # Wesley Ivan Hurt, Dec 03 2013
-
Mathematica
Table[Sum[Binomial[n-2*i,i]*(-1)^i*5^(n-3*i), {i,0,Floor[n/3]}], {n,0, 30}] (* Wesley Ivan Hurt, Dec 03 2013 *) LinearRecurrence[{5,0,-1}, {1,5,25}, 30] (* G. C. Greubel, Aug 03 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A099504 if (n<3): return 5^n else: return 5*a(n-1) - a(n-3) [a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023
Formula
a(n) = 5*a(n-1) - a(n-3).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*5^(n-3*k).
Comments