cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099559 a(n) = Sum_{k=0..floor(n/5)} C(n-4k,k+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 10, 14, 19, 25, 33, 44, 59, 79, 105, 139, 184, 244, 324, 430, 570, 755, 1000, 1325, 1756, 2327, 3083, 4084, 5410, 7167, 9495, 12579, 16664, 22075, 29243, 38739, 51319, 67984, 90060, 119304, 158044, 209364, 277349, 367410, 486715
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Crossrefs

Cf. A098578.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,0,1,-1},{0,1,2,3,4,5},50] (* Harvey P. Dale, Feb 20 2017 *)
  • PARI
    a(n) = sum(k=0,n\5, binomial(n-4*k, k+1)); \\ Michel Marcus, Jul 11 2018

Formula

Partial sums of A003520 (with leading zero).
G.f.: x / ( (x-1)*(x^2-x+1)*(x^3+x^2-1) ).
a(n) = 2a(n-1)-a(n-2)+a(n-5)-a(n-6).
7*a(n) = A117373(n+2) -7 +10*b(n) +15*b(n-1) +9*b(n-2), where b(n) = A182097(n). - R. J. Mathar, Aug 07 2017
a(n) = A003520(n+4) -1. - R. J. Mathar, Aug 07 2017

Extensions

Values from a(5) on corrected by R. J. Mathar, Jul 29 2008