cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099583 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*2^(n-k-1)*(3/2)^(k-1).

Original entry on oeis.org

0, 0, 1, 2, 10, 26, 91, 260, 820, 2420, 7381, 22022, 66430, 198926, 597871, 1792520, 5380840, 16139240, 48427561, 145272842, 435848050, 1307514626, 3922632451, 11767808780, 35303692060, 105910810460, 317733228541, 953198888462
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

In general, a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*u^(n-k-1)*(v/u)^(k-1) has g.f. x^2/((1-v*x^2)(1-u*x-v*x^2)) and satisfies the recurrence a(n) = u*a(n-1) + 2v*a(n-2) - u*v*a(n-3) - v^2*a(n-4).

Crossrefs

Programs

  • Magma
    I:=[0,0,1,2]; [n le 4 select I[n] else 2*Self(n-1) +6*Self(n-2) -6*Self(n-3) -9*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 22 2022
    
  • Mathematica
    LinearRecurrence[{2,6,-6,-9}, {0,0,1,2}, 40] (* G. C. Greubel, Jul 22 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k-1)*2^(n-k-1)*(3/2)^(k-1)); \\ Michel Marcus, Jan 20 2018
    
  • SageMath
    [(1/8)*(3^n -(-1)^n -2*(1-(-1)^n)*3^((n-1)/2)) for n in (0..40)] # G. C. Greubel, Jul 22 2022

Formula

G.f.: x^2/((1-3*x^2)*(1-2*x-3*x^2)).
a(n) = 2*a(n-1) + 6*a(n-2) - 6*a(n-3) - 9*a(n-4).
a(n) = A002452(n/2) if n even; a(n) = 2*A006100((n+1)/2) if n odd. - R. J. Mathar, Jun 06 2010
a(0)=0, a(1)=0; a(2)=1; a(n) = 2*a(n-1) + 3*a(n-2) if n is odd; a(n) = 2*a(n-1) + 3*a(n-2) + 3^m (m=1,2,3...) if n is even. - Vincenzo Librandi, Jun 26 2010
From G. C. Greubel, Jul 22 2022: (Start)
a(n) = (1/8)*(3^n - (-1)^n - 2*(1-(-1)^n)*3^((n-1)/2) ).
E.g.f.: (1/12)*(3*exp(x)*sinh(2*x) - 2*sqrt(3)*sinh(sqrt(3)*x)). (End)