cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099612 Numerators of the coefficients in the Taylor expansion of sec(x) + tan(x) around x=0.

Original entry on oeis.org

1, 1, 1, 1, 5, 2, 61, 17, 277, 62, 50521, 1382, 540553, 21844, 199360981, 929569, 3878302429, 6404582, 2404879675441, 443861162, 14814847529501, 18888466084, 69348874393137901, 113927491862, 238685140977801337, 58870668456604, 4087072509293123892361
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2004

Keywords

Examples

			1 + x + 1/2*x^2 + 1/3*x^3 + 5/24*x^4 + 2/15*x^5 + 61/720*x^6 + 17/315*x^7 + ...
1, 1, 1/2, 1/3, 5/24, 2/15, 61/720, 17/315, 277/8064, 62/2835, 50521/3628800, 1382/155925, 540553/95800320, ... = A099612/A099617
		

Crossrefs

Programs

  • Maple
    R := n -> (cos(n*Pi/2)+sin(n*Pi/2))*(4^(n+1)-2^(n+1))*((Zeta(0,-n,3/4)-Zeta(0,-n,1/4))/(2^(-n)-2)-Zeta(-n))/GAMMA(n+1):
    [1, seq(numer(R(n)), n=1..19)]; # Peter Luschny, Aug 25 2015
    # From Peter Luschny, Aug 03 2017: (Start) By recurrence:
    S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
    S(n, k - 1) + S(n - 1, n - k) fi end: A099612 := n -> numer(S(n, n)/n!):
    seq(A099612(n), n=0..26);
    # or evaluating polynomials at -i:
    P := proc(n, x) local k, j; add(add((-1)^j*2^(-k)*binomial(k,j)*(k-2*j)^n*
    x^(n-k), j=0..k), k=0..n) end: R := n -> `if`(n = 0, 1, P(n-1, -I)/ n!):
    seq(numer(R(n)), n=0..26);
    # or with the Euler polynomials:
    ep := n -> `if`(n=0,1,2^n*(euler(n,1/2)-euler(n,1))*(-1)^iquo(n+1,2)):
    a := n -> numer(ep(n)/n!): seq(a(n), n=0..26); # (End)
  • Mathematica
    nn = 26; Numerator[CoefficientList[Series[Sec[x] + Tan[x], {x, 0, nn}], x]] (* T. D. Noe, Jul 24 2013 *)
    Table[If[n==0,1,2 I^(n+1) PolyLog[-n, -I] / n!], {n,0,26}] // Numerator (* Peter Luschny, Aug 03 2017 *)
    Table[(1 + Mod[n,2])LerchPhi[(-1)^(n+1), n+1, 1/2]/Pi^(n+1), {n, 0, 26}] // Numerator (* Peter Luschny, Aug 03 2017 *)

Formula

Let R(x) = (-1)^floor(x/2)*(4^(x+1)-2^(x+1))*((HurwitzZeta(-x,3/4) - HurwitzZeta(-x,1/4)) /(2^(-x)-2)-Zeta(-x))/Gamma(x+1) then a(n) = numerator(R(n)) and A099617(n) = denominator(R(n)) for n>=1. - Peter Luschny, Aug 25 2015
Let F(x,t) = exp(-I*t*x)*(1+(exp(exp(I*t))-1)/(exp(2*exp(I*t))+1)) and r(x) = ((cos(x*Pi/2)+sin(x*Pi/2))/Pi)*Integral_{t=0..2*Pi} F(x,t) then a(n) = numerator(r(n)) and A099617(n) = denominator(r(n)) for n>=1. - Peter Luschny, Aug 25 2015
a(n)/A099617(n) = A000111(n)/n!. - Seiichi Manyama, Jan 27 2017
From Peter Luschny, Aug 03 2017: (Start)
a(n) = numerator(2*i^(n+1)*PolyLog(-n, -i)/n!) for n>0.
a(n) = numerator(2^n*|Euler(n,1/2) - Euler(n,1)|/n!) for n>0 where Euler(n,x) are the Euler polynomials. (End)
Conjecture: For n >= 0, (-1)^n * a(n+1) is the numerator of the n-th term of the Taylor expansion of 1/(1 + sin(x)) around x = 0. [This is based on the fact that (sec(x) + tan(x))' = 1/(1 + sin(-x)). Clark Kimberling in A279107 states my conjecture as a fact, but no proof or reference is given.] - Petros Hadjicostas, Oct 06 2019