cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099765 a(n) = (1/Pi)*(2^n/n)*(n-1)!*Integral_{t>=0} (sin(t)/t)^n dt.

Original entry on oeis.org

1, 1, 2, 8, 46, 352, 3364, 38656, 519446, 7996928, 138826588, 2683604992, 57176039628, 1331300646912, 33636118326984, 916559498182656, 26795449170328038, 836606220759859200, 27784046218331805100
Offset: 1

Views

Author

Benoit Cloitre, Nov 11 2004, Dec 11 2007

Keywords

Crossrefs

Programs

  • Magma
    [(1/n)*(&+[(-1)^j*Binomial(n,j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]): n in [1..25]]; // G. C. Greubel, Apr 01 2022
    
  • Mathematica
    Table[1/n Sum[(-1)^k Binomial[n,k](n-2k)^(n-1),{k,0,Floor[n/2]}], {n,20}] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    a(n)=(1/n)*sum(k=0,floor(n/2),(-1)^k*binomial(n,k)*(n-2*k)^(n-1))
    
  • Sage
    [(1/n)*sum((-1)^j*binomial(n,j)*(n-2*j)^(n-1) for j in (0..(n//2))) for n in (1..25)] # G. C. Greubel, Apr 01 2022

Formula

a(n) = (1/n) * Sum_{k=0, floor(n/2)} (-1)^k * binomial(n, k) * (n-2*k)^(n-1).
a(n) = A261398(n)/n. - Vladimir Reshetnikov, Sep 05 2016