cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099812 Number of distinct primes dividing 2n (i.e., omega(2n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 1, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Comments

Bisection of A001221.

Examples

			a(6) = 2 because 12 = 2*2*3 has 2 distinct prime divisors.
a(15) = 3 because 30 = 2*3*5 has 3 distinct prime divisors.
		

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(2*n): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
  • Maple
    with(numtheory): omega:=proc(n) local div,A,j: div:=divisors(n): A:={}: for j from 1 to tau(n) do if isprime(div[j])=true then A:=A union {div[j]} else A:=A fi od: nops(A) end: seq(omega(2*n),n=1..130); # Emeric Deutsch, Mar 10 2005
  • Mathematica
    Table[PrimeNu[2*n], {n,1,50}] (* G. C. Greubel, May 21 2017 *)
  • PARI
    for(n=1,50, print1(omega(2*n), ", ")) \\ G. C. Greubel, May 21 2017
    

Formula

From Amiram Eldar, Sep 21 2024: (Start)
a(n) = A001221(2*n).
a(n) = omega(n) + 1 if n is odd, and a(n) = omega(n) if n is even.
Sum_{k=1..n} a(k) = n * (log(log(n)) + B + 1/2) + O(n/log(n)), where B is Mertens's constant (A077761). (End)

Extensions

More terms from Emeric Deutsch, Mar 10 2005