cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A092523 Number of distinct prime factors of n-th odd number.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[n],{n,1,211,2}] (* Harvey P. Dale, May 25 2015 *)
  • PARI
    a(n) = omega(2*n-1); \\ Amiram Eldar, Sep 21 2024

Formula

a(n) = A001221(2*n-1).
Sum_{k=1..n} a(k) = n * (log(log(n)) + B - 1/2) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024

A129597 Central diagonal of array A129595.

Original entry on oeis.org

1, 4, 6, 16, 10, 24, 14, 64, 54, 40, 22, 96, 26, 56, 90, 256, 34, 216, 38, 160, 126, 88, 46, 384, 250, 104, 486, 224, 58, 360, 62, 1024, 198, 136, 350, 864, 74, 152, 234, 640, 82, 504, 86, 352, 810, 184, 94, 1536, 686, 1000, 306, 416, 106, 1944, 550, 896, 342
Offset: 1

Views

Author

Antti Karttunen, May 01 2007, based on Marc LeBrun's Jan 11 2006 message on SeqFan mailing list

Keywords

Comments

These are the positions of first appearances of each positive integer in A346704. - Gus Wiseman, Oct 16 2021

Crossrefs

a(n) = A129595(n,n).
The sum of prime indices of a(n) is 2*A056239(n) - A061395(n) + 1 for n > 1.
The version for odd indices is A342768(n) = a(n)/2 for n > 1.
Except the first term, the sorted version is 2*A346635.
These are the positions of first appearances in A346704.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A027187 counts partitions of even length, ranked by A028260.
A346633 adds up the even bisection of standard compositions (odd: A209281).
A346698 adds up the even bisection of prime indices (reverse: A346699).

Programs

  • Mathematica
    Table[If[n==1,1,2*n^2/FactorInteger[n][[-1,1]]],{n,100}] (* Gus Wiseman, Aug 10 2021 *)
  • PARI
    A129597(n) = if(1==n, n, my(f=factor(n)); (2*n*n)/f[#f~, 1]); \\ Antti Karttunen, Oct 16 2021

Formula

From Gus Wiseman, Aug 10 2021: (Start)
For n > 1, A001221(a(n)) = A099812(n).
If g = A006530(n) is the greatest prime factor of n > 1, then a(n) = 2n^2/g.
a(n) = A100484(A000720(n)) = 2n iff n is prime.
a(n > 1) = 2*A342768(n).
(End)

A100008 Number of unitary divisors of 2n.

Original entry on oeis.org

2, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 2, 8, 4, 8, 4, 4, 4, 8, 4, 4, 8, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 8, 4, 4, 8, 2, 8, 8, 4, 4, 8, 8, 4, 4, 4, 4, 8, 4, 8, 8, 4, 4, 4, 4, 4, 8, 8, 4, 8, 4, 4, 8, 8, 4, 8, 4, 8, 4, 4, 4, 8, 4, 4, 8, 4, 4, 16
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Comments

b(n) = a(n)/a(1) is multiplicative with b(2^e) = 1, b(p^e) = 2 otherwise. - David W. Wilson, Jun 12 2005

Examples

			a(6)=4 because among the six divisors of 12 only 1,3,4 and 12 are unitary.
		

Crossrefs

Bisection of A034444, twice A068068.

Programs

  • Maple
    with(numtheory): for n from 1 to 120 do printf(`%d,`,2^nops(ifactors(2*n)[2])) od: # Emeric Deutsch, Dec 24 2004
  • Mathematica
    a[n_] := 2^PrimeNu[2*n]; Array[a, 100] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    A100008(n) = 2^omega(2*n); \\ Antti Karttunen, Sep 14 2017

Formula

a(n) = A000079(A099812(n)) = A000079(A001221(2n)) = 2*A068068(n). - Antti Karttunen, Sep 14 2017
Dirichlet g.f.: 2*zeta(s)^2/(zeta(2*s)*(1+1/2^s)). - Amiram Eldar, Jan 28 2023
Sum_{k=1..n} a(k) ~ 8*n*((log(n) - 1 + 2*gamma + log(2)/3)/Pi^2 - 12*zeta'(2)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 28 2023

Extensions

More terms from Emeric Deutsch, Dec 24 2004
Showing 1-3 of 3 results.