cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346704 Product of primes at even positions in the weakly increasing list (with multiplicity) of prime factors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 2, 1, 7, 5, 4, 1, 3, 1, 2, 7, 11, 1, 6, 5, 13, 3, 2, 1, 3, 1, 4, 11, 17, 7, 6, 1, 19, 13, 10, 1, 3, 1, 2, 3, 23, 1, 4, 7, 5, 17, 2, 1, 9, 11, 14, 19, 29, 1, 10, 1, 31, 3, 8, 13, 3, 1, 2, 23, 5, 1, 6, 1, 37, 5, 2, 11, 3, 1, 4, 9
Offset: 1

Views

Author

Gus Wiseman, Aug 08 2021

Keywords

Examples

			The prime factors of 108 are (2,2,3,3,3), with even bisection (2,3), with product 6, so a(108) = 6.
The prime factors of 720 are (2,2,2,2,3,3,5), with even bisection (2,2,3), with product 12, so a(720) = 12.
		

Crossrefs

Positions of first appearances are A129597.
Positions of 1's are A008578.
Positions of primes are A168645.
The sum of prime indices of a(n) is A346698(n).
The odd version is A346703 (sum: A346697).
The odd reverse version is A346701 (sum: A346699).
The reverse version appears to be A329888 (sum: A346700).
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433/A335448 rank separable/inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346633 adds up the even bisection of standard compositions.

Programs

  • Maple
    f:= proc(n) local F,i;
      F:= ifactors(n)[2];
      F:= sort(map(t -> t[1]$t[2],F));
      mul(F[i],i=2..nops(F),2)
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 12 2024
  • Mathematica
    Table[Times@@Last/@Partition[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]],2],{n,100}]

Formula

a(n) * A346703(n) = n.
A056239(a(n)) = A346698(n).

A129595 Array A(i,j): A(1,1), A(2,1), A(1,2), A(3,1), A(2,2), A(1,3), ... of elementwise sums of partitions encoded in the prime factorizations of i and j.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 9, 9, 4, 5, 8, 6, 8, 5, 6, 25, 27, 27, 25, 6, 7, 18, 15, 16, 15, 18, 7, 8, 49, 12, 125, 125, 12, 49, 8, 9, 16, 35, 54, 10, 54, 35, 16, 9, 10, 27, 81, 343, 45, 45, 343, 81, 27, 10, 11, 50, 18, 32, 21, 24, 21, 32, 18, 50, 11, 12, 121, 30, 81, 625, 175
Offset: 1

Views

Author

Antti Karttunen, May 01 2007, based on Marc LeBrun's Jan 11 2006 message on SeqFan mailing list

Keywords

Comments

As described by Marc LeBrun, we can map integers 1-to-1 to partitions in a "crazy" order: factor n, take the (finite) tuple of exponents, add 1 to the first, use the rest as successive differences between parts and finally subtract 1 from the last part, thus we get the following partitions (elements in ascending order): 2 -> [1] -> 1, 3 -> [0,1] -> 1+1, 4 -> [2] -> 2, 5 -> [0,0,1] -> 1+1+1, 6 -> [1,1] -> 2+2, 7 -> [0,0,0,1] -> 1+1+1+1, 8 -> [3] -> 3, 9 -> [0,2] -> 1+2, 10 -> [1,0,1] -> 2+2+2, etc.
Inverse process: from a sorted (elements in ascending order) partition of n, subtract 1 from the first part, then take the first differences of parts and add 1 to the last (of differences or the first part if a singular partition) and use them as the exponents for A000040(1), A000040(2), etc. and multiply.
This array is obtained when we encode in such a way the partition obtained as an element-wise sum of two partitions encoded by i and j. The element-wise addition begins from the largest elements of the partitions, continuing towards the smaller elements and if the partitions do not contain the same number of elements, the shorter is prepended with as many zeros as needed to make them of equal length.
On what condition does A(i,j) = i*j ? E.g., A(3,5)=15, A(3,10)=30, A(5,11)=55. However A(3,7)=35 and A(5,7)=21.

Examples

			a(54) = A(9,2) = 27 because when we add element-wise partition 1+2 encoded by 9 to a singular partition 1 encoded by 2, we get partition 1+3, which maps to exponent tuple [0,3] and 27 = 2^0 * 3^3.
		

Crossrefs

A122111 gives the involution of natural numbers induced when partition conjugation (see A129594) is applied to the same encoding.

A342768 a(n) = A342767(n, n).

Original entry on oeis.org

1, 2, 3, 8, 5, 12, 7, 32, 27, 20, 11, 48, 13, 28, 45, 128, 17, 108, 19, 80, 63, 44, 23, 192, 125, 52, 243, 112, 29, 180, 31, 512, 99, 68, 175, 432, 37, 76, 117, 320, 41, 252, 43, 176, 405, 92, 47, 768, 343, 500, 153, 208, 53, 972, 275, 448, 171, 116, 59, 720
Offset: 1

Views

Author

Rémy Sigrist, Apr 02 2021

Keywords

Comments

This sequence has similarities with A087019.
These are the positions of first appearances of each positive integer in A346701, and also in A346703. - Gus Wiseman, Aug 09 2021

Examples

			For n = 42:
- 42 = 2 * 3 * 7, so:
          2 3 7
        x 2 3 7
        -------
          2 3 7
        2 3 3
    + 2 2 2
    -----------
      2 2 3 3 7
- hence a(42) = 2 * 2 * 3 * 3 * 7 = 252.
		

Crossrefs

The sum of prime indices of a(n) is 2*A056239(n) - A061395(n).
The version for even indices is A129597(n) = 2*a(n) for n > 1.
The sorted version is A346635.
These are the positions of first appearances in A346701 and in A346703.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A027193 counts partitions of odd length, ranked by A026424.
A209281 adds up the odd bisection of standard compositions (even: A346633).
A346697 adds up the odd bisection of prime indices (reverse: A346699).

Programs

  • Mathematica
    Table[n^2/FactorInteger[n][[-1,1]],{n,100}] (* Gus Wiseman, Aug 09 2021 *)
  • PARI
    See Links section.

Formula

a(n) = n iff n = 1 or n is a prime number.
a(p^k) = p^(2*k-1) for any k > 0 and any prime number p.
A007947(a(n)) = A007947(n).
A001222(a(n)) = 2*A001222(n) - 1 for any n > 1.
From Gus Wiseman, Aug 09 2021: (Start)
A001221(a(n)) = A001221(n).
If g = A006530(n) is the greatest prime factor of n, then a(n) = n^2/g.
a(n) = A129597(n)/2.
(End)

A346635 Numbers whose division (or multiplication) by their greatest prime factor yields a perfect square. Numbers k such that k*A006530(k) is a perfect square.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 67, 68, 71, 73, 76, 79, 80, 83, 89, 92, 97, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2021

Keywords

Comments

This is the sorted version of A342768(n) = position of first appearance of n in A346701 (but A346703 works also).

Examples

			The terms together with their prime indices begin:
     1: {}          31: {11}            71: {20}
     2: {1}         32: {1,1,1,1,1}     73: {21}
     3: {2}         37: {12}            76: {1,1,8}
     5: {3}         41: {13}            79: {22}
     7: {4}         43: {14}            80: {1,1,1,1,3}
     8: {1,1,1}     44: {1,1,5}         83: {23}
    11: {5}         45: {2,2,3}         89: {24}
    12: {1,1,2}     47: {15}            92: {1,1,9}
    13: {6}         48: {1,1,1,1,2}     97: {25}
    17: {7}         52: {1,1,6}         99: {2,2,5}
    19: {8}         53: {16}           101: {26}
    20: {1,1,3}     59: {17}           103: {27}
    23: {9}         61: {18}           107: {28}
    27: {2,2,2}     63: {2,2,4}        108: {1,1,2,2,2}
    28: {1,1,4}     67: {19}           109: {29}
    29: {10}        68: {1,1,7}        112: {1,1,1,1,4}
		

Crossrefs

Removing 1 gives a subset of A026424.
The unsorted even version is A129597.
The unsorted version is A342768(n) = A342767(n,n).
Except the first term, the even version is 2*a(n).
A000290 lists squares.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A006530 gives the greatest prime factor.
A061395 gives the greatest prime index.
A027193 counts partitions of odd length.
A056239 adds up prime indices, row sums of A112798.
A209281 = odd bisection sum of standard compositions (even: A346633).
A316524 = alternating sum of prime indices (sign: A344617, rev.: A344616).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.
A346697 = odd bisection sum of prime indices (weights of A346703).
A346699 = odd bisection sum of reversed prime indices (weights of A346701).

Programs

  • Maple
    filter:= proc(n) issqr(n/max(numtheory:-factorset(n))) end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Nov 26 2022
  • Mathematica
    sqrQ[n_]:=IntegerQ[Sqrt[n]];
    Select[Range[100],sqrQ[#*FactorInteger[#][[-1,1]]]&]
  • PARI
    isok(m) = (m==1) || issquare(m/vecmax(factor(m)[,1])); \\ Michel Marcus, Aug 12 2021

Formula

a(n) = A129597(n)/2 for n > 1.
Showing 1-4 of 4 results.