A099850 Partial sums of A004648.
0, 1, 3, 6, 7, 8, 11, 14, 19, 28, 37, 38, 40, 41, 43, 48, 56, 63, 73, 84, 94, 107, 121, 138, 160, 183, 205, 228, 250, 273, 276, 279, 284, 287, 296, 303, 312, 323, 334, 347, 362, 375, 394, 411, 428, 443, 466, 497, 528, 557, 586, 617, 646, 681, 718, 757, 798, 837
Offset: 1
Examples
A004648 begins: 0, 1, 2, 3, 1, 1, 3, 3, 5, 9, 9, ... so the partial sums are 0, 1, 3, 6, 7, 8, 11, 14, 19, 28, 37, ...
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A004648.
Programs
-
Magma
[(&+[(NthPrime(k) mod k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Apr 20 2023
-
Mathematica
Table[Sum[Mod[Prime[j], j], {j,n}], {n,100}] (* G. C. Greubel, Apr 20 2023 *) Accumulate[Table[Mod[Prime[n],n],{n,100}]] (* Harvey P. Dale, Jun 14 2023 *)
-
PARI
s=vector(100):s[1]=prime(1)%1:for(n=2,100,s[n]=s[n-1]+prime(n)%n)
-
SageMath
def A004648(n): return (nth_prime(n)%n) def A099850(n): return sum(A004648(k) for k in range(1,n+1)) [A099850(n) for n in range(1,101)] # G. C. Greubel, Apr 20 2023
Formula
a(n) = Sum_{k=1..n} A004648(k).