cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099855 a(n) = n*2^n - 2^(n/2)*sin(Pi*n/4).

Original entry on oeis.org

0, 1, 6, 22, 64, 164, 392, 904, 2048, 4592, 10208, 22496, 49152, 106560, 229504, 491648, 1048576, 2227968, 4718080, 9960960, 20971520, 44041216, 92276736, 192940032, 402653184, 838856704, 1744822272, 3623870464, 7516192768
Offset: 0

Views

Author

Paul Barry, Oct 28 2004

Keywords

Comments

Related to binomial transform of A002265. Sequence is identical to its fourth differences (cf. A139756, A137221). See also A097064, A135035, A038504, A135356. - Paul Curtz, Jun 18 2008

Crossrefs

Binomial transform of A047538.

Programs

  • Magma
    I:=[0,1,6,22]; [n le 4 select I[n] else 6*Self(n-1) -14*Self(n-2) +16*Self(n-3) -8*Self(n-4): n in [1..51]]; // G. C. Greubel, Apr 20 2023
    
  • Mathematica
    LinearRecurrence[{6,-14,16,-8},{0,1,6,22},30] (* Harvey P. Dale, Mar 22 2018 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A099855
        if (n<5): return (0,1,6,22,64)[n]
        else: return 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4)
    [a(n) for n in range(51)] # G. C. Greubel, Apr 20 2023

Formula

G.f.: x/((1-2*x+2*x^2)*(1-4*x+4*x^2)).
a(n) = Sum_{k=0..n} 2^(k/2)*sin(Pi*k/4)*2^(n-k)*(n-k+1).
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4).
a(n) = 2*A001787(n) - A009545(n).