cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099880 Number of preferential arrangements (or simple hierarchies) of 2*n labeled elements with two kinds of elements (where each kind has n elements).

Original entry on oeis.org

1, 2, 18, 260, 5250, 136332, 4327092, 162309576, 7024896450, 344582629820, 18890850749628, 1144656941236536, 75963981061424820, 5479642938171428600, 426894499408073653800, 35720957482170932284560, 3195135789350678836128450, 304234032845362459798904220
Offset: 0

Views

Author

Thomas Wieder, Nov 02 2004

Keywords

Comments

The unlabeled case seems to be given by A003480, which can be generated by the following combstruct command: SeqUnionU := [S, {S=Sequence(Set(U,card>=1), card>=1), U=Union(a,b), a=Atom, b=Atom},unlabeled]; [seq(count(SeqUnionU, size=n), n=0..20)]; .

Examples

			Let a[1], a[2],...,a[n] and b[1],b[2],...,b[n] denote two kinds "a" and "b" of labeled elements where each kind as n elements in total.
Let ":" denote a level, e.g., if the elements a[1] and a[2] are on level L=1 and the element b[1] is on level L=2 then a[1]a[2]:b[1] is a preferrential arrangement (a simple hierarchy) with two levels.
Then for n=2 we have a(2) = 18 arrangements: a[1]a[2]; a[1]:a[2]; a[2]:a[1]; a[1]b[1]; a[1]:b[1]; b[1]:a[1]; a[1]b[2]; a[1]:b[2]; b[2]:a[1]; a[2]b[1]; a[2]:b[1]; b[1]:a[2]; a[2]b[2]; a[2]:b[2]; b[2]:a[2]; b[1]b[2]; b[1]:b[2]; b[2]:b[1].
		

Crossrefs

Programs

  • Maple
    a:=n-> add(binomial(2*n, n)*(Stirling2(n, k))*k!, k=0..n): seq(a(n), n=0..16); # Zerinvary Lajos, Oct 19 2006
    # second Maple program:
    b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=1..n)) end:
    a:= n-> b(n)*(2*n)!/n!:
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 03 2019
  • Mathematica
    f[n_] := Sum[l! StirlingS2[n, l] Binomial[2n, n], {l, n}]; Table[ f[n], {n, 0, 16}] (* Robert G. Wilson v, Nov 04 2004 *)

Formula

a(n) = binomial(2*n, n) * Sum_{k=0..n} k! * Stirling2(n, k).
a(n) = binomial(2*n, n) * A000670(n).
a(n) = A154921(2n,n). - Mats Granvik, Feb 07 2009

Extensions

More terms from Robert G. Wilson v, Nov 04 2004
a(0) corrected and edited by Alois P. Heinz, Feb 03 2019