A099880 Number of preferential arrangements (or simple hierarchies) of 2*n labeled elements with two kinds of elements (where each kind has n elements).
1, 2, 18, 260, 5250, 136332, 4327092, 162309576, 7024896450, 344582629820, 18890850749628, 1144656941236536, 75963981061424820, 5479642938171428600, 426894499408073653800, 35720957482170932284560, 3195135789350678836128450, 304234032845362459798904220
Offset: 0
Keywords
Examples
Let a[1], a[2],...,a[n] and b[1],b[2],...,b[n] denote two kinds "a" and "b" of labeled elements where each kind as n elements in total. Let ":" denote a level, e.g., if the elements a[1] and a[2] are on level L=1 and the element b[1] is on level L=2 then a[1]a[2]:b[1] is a preferrential arrangement (a simple hierarchy) with two levels. Then for n=2 we have a(2) = 18 arrangements: a[1]a[2]; a[1]:a[2]; a[2]:a[1]; a[1]b[1]; a[1]:b[1]; b[1]:a[1]; a[1]b[2]; a[1]:b[2]; b[2]:a[1]; a[2]b[1]; a[2]:b[1]; b[1]:a[2]; a[2]b[2]; a[2]:b[2]; b[2]:a[2]; b[1]b[2]; b[1]:b[2]; b[2]:b[1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..348
Programs
-
Maple
a:=n-> add(binomial(2*n, n)*(Stirling2(n, k))*k!, k=0..n): seq(a(n), n=0..16); # Zerinvary Lajos, Oct 19 2006 # second Maple program: b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=1..n)) end: a:= n-> b(n)*(2*n)!/n!: seq(a(n), n=0..20); # Alois P. Heinz, Feb 03 2019
-
Mathematica
f[n_] := Sum[l! StirlingS2[n, l] Binomial[2n, n], {l, n}]; Table[ f[n], {n, 0, 16}] (* Robert G. Wilson v, Nov 04 2004 *)
Formula
a(n) = binomial(2*n, n) * Sum_{k=0..n} k! * Stirling2(n, k).
a(n) = binomial(2*n, n) * A000670(n).
a(n) = A154921(2n,n). - Mats Granvik, Feb 07 2009
Extensions
More terms from Robert G. Wilson v, Nov 04 2004
a(0) corrected and edited by Alois P. Heinz, Feb 03 2019
Comments