cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099885 Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)).

Original entry on oeis.org

1, 2, 6, 12, 20, 40, 120, 240, 272, 544, 1632, 3264, 5440, 10880, 32640, 65280, 65792, 131584, 394752, 789504, 1315840, 2631680, 7895040, 15790080, 17895424, 35790848, 107372544, 214745088, 357908480, 715816960, 2147450880, 4294901760
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2004

Keywords

Comments

XOR BINOMIAL transform of this sequence is A099886.

Examples

			XOR difference triangle of the powers of 2 (A099884) begins:
.
            (central terms)
                   |
                   |
                   1;
                   2,   3;
              4,   6,   5;
              8,  12,  10,  15;
        16,  24,  20,  30,  17;
        32,  48,  40,  60,  34,  51;
   64,  96,  80, 120,  68, 102,  85;
  128, 192, 160, 240, 136, 204, 170, 255;
  ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(B);B=0;for(i=0,n\2,B=bitxor(B,binomial(n\2,i)%2*2^(n\2-i)));2^((n+1)\2)*B}
    
  • Python
    def A099885(n): return sum((bool(~(m:=n>>1)&m-k)^1)<>1)+1))<<(n+1>>1) # Chai Wah Wu, May 03 2023

Formula

a(n) = 2^floor((n+1)/2)*A001317(floor(n/2)), where A001317 forms the XOR BINOMIAL transform of the powers of 2.
It appears that a(2*n) = A117998(n). - Peter Bala, Feb 01 2017