A099885 Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)).
1, 2, 6, 12, 20, 40, 120, 240, 272, 544, 1632, 3264, 5440, 10880, 32640, 65280, 65792, 131584, 394752, 789504, 1315840, 2631680, 7895040, 15790080, 17895424, 35790848, 107372544, 214745088, 357908480, 715816960, 2147450880, 4294901760
Offset: 0
Examples
XOR difference triangle of the powers of 2 (A099884) begins: . (central terms) | | 1; 2, 3; 4, 6, 5; 8, 12, 10, 15; 16, 24, 20, 30, 17; 32, 48, 40, 60, 34, 51; 64, 96, 80, 120, 68, 102, 85; 128, 192, 160, 240, 136, 204, 170, 255; ...
Links
- Eric Weisstein's World of Mathematics, Rule 102
Programs
-
PARI
{a(n)=local(B);B=0;for(i=0,n\2,B=bitxor(B,binomial(n\2,i)%2*2^(n\2-i)));2^((n+1)\2)*B}
-
Python
def A099885(n): return sum((bool(~(m:=n>>1)&m-k)^1)<
>1)+1))<<(n+1>>1) # Chai Wah Wu, May 03 2023
Formula
a(n) = 2^floor((n+1)/2)*A001317(floor(n/2)), where A001317 forms the XOR BINOMIAL transform of the powers of 2.
It appears that a(2*n) = A117998(n). - Peter Bala, Feb 01 2017
Comments