A099929 Central Pellonomial coefficients.
1, 2, 30, 2436, 1166438, 3248730940, 52755584809356, 4992850354675749192, 2754130291777980970686150, 8854642279944231931659815098860, 165923943638796574201560736475319416580, 18121679707218614746613513717704194807763644600
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
Programs
-
Maple
p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end: f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end: a:= n-> f(2*n)/f(n)^2: seq(a(n), n=0..15); # Alois P. Heinz, Aug 15 2013
-
Mathematica
Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k],{k,1,2*n}]/(Product[Pell[k],{k,1,n}])^2,{n,0,20}] (* Vaclav Kotesovec, Apr 10 2015 *)
-
Sage
P=[lucas_number1(n, 2, -1) for n in [0..30]] [prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]] # Tom Edgar, Apr 10 2015
-
Sage
def a(n): return ((1+sqrt(2))^n^2*q_binomial(2*n, n, -(3-2*sqrt(2)))).simplify_full() # Seiichi Manyama, May 10 2025
Formula
a(n) = A099927(2n, n).
a(n) ~ (1+sqrt(2))^(n^2) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015
a(n) = (1 + sqrt(2))^(n^2) * q-binomial(2*n, n, -(sqrt(2) - 1)^2). - Seiichi Manyama, May 10 2025