cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099929 Central Pellonomial coefficients.

Original entry on oeis.org

1, 2, 30, 2436, 1166438, 3248730940, 52755584809356, 4992850354675749192, 2754130291777980970686150, 8854642279944231931659815098860, 165923943638796574201560736475319416580, 18121679707218614746613513717704194807763644600
Offset: 0

Views

Author

Ralf Stephan, Nov 03 2004

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end:
    f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end:
    a:= n-> f(2*n)/f(n)^2:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 15 2013
  • Mathematica
    Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k],{k,1,2*n}]/(Product[Pell[k],{k,1,n}])^2,{n,0,20}] (* Vaclav Kotesovec, Apr 10 2015 *)
  • Sage
    P=[lucas_number1(n, 2, -1) for n in [0..30]]
    [prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]] # Tom Edgar, Apr 10 2015
    
  • Sage
    def a(n): return ((1+sqrt(2))^n^2*q_binomial(2*n, n, -(3-2*sqrt(2)))).simplify_full() # Seiichi Manyama, May 10 2025

Formula

a(n) = A099927(2n, n).
a(n) ~ (1+sqrt(2))^(n^2) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015
a(n) = (1 + sqrt(2))^(n^2) * q-binomial(2*n, n, -(sqrt(2) - 1)^2). - Seiichi Manyama, May 10 2025