cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099985 a(n) = rad(2n), where rad = A007947.

Original entry on oeis.org

2, 2, 6, 2, 10, 6, 14, 2, 6, 10, 22, 6, 26, 14, 30, 2, 34, 6, 38, 10, 42, 22, 46, 6, 10, 26, 6, 14, 58, 30, 62, 2, 66, 34, 70, 6, 74, 38, 78, 10, 82, 42, 86, 22, 30, 46, 94, 6, 14, 10, 102, 26, 106, 6, 110, 14, 114, 58, 118, 30, 122, 62, 42, 2, 130, 66, 134, 34, 138, 70, 142, 6
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Comments

Bisection of A007947.

Crossrefs

Programs

  • Maple
    with(numtheory): A007947 := proc(n) local i,t1,t2; t1 :=ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end: seq(A007947(2*n),n=1..78); # Emeric Deutsch, Dec 15 2004
  • Mathematica
    Table[Product[p, {p, Select[Divisors[2 n], PrimeQ]}], {n, 100}] (* Wesley Ivan Hurt, May 08 2022 *)
    a[n_] := Times @@ (First /@ FactorInteger[2*n]); Array[a, 100]  (* Amiram Eldar, Nov 19 2022 *)
  • PARI
    A099985(n) = factorback(factorint(n+n)[, 1]); \\ Antti Karttunen, May 08 2022

Formula

a(n) = 2 * A204455(n).
a(n) = A007947(2n). - Wesley Ivan Hurt, May 07 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/5) * Product_{p prime} (1 - 1/(p*(p+1))) = (4/5) * A065463 = 0.563553... . - Amiram Eldar, Nov 19 2022

Extensions

More terms from Emeric Deutsch, Dec 15 2004
Name changed by Wesley Ivan Hurt, May 07 2022