A204455
Squarefree product of all odd primes dividing n, and 1 if n is a power of 2: A099985/2.
Original entry on oeis.org
1, 1, 3, 1, 5, 3, 7, 1, 3, 5, 11, 3, 13, 7, 15, 1, 17, 3, 19, 5, 21, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 1, 33, 17, 35, 3, 37, 19, 39, 5, 41, 21, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 55, 7, 57, 29, 59, 15, 61, 31, 21, 1, 65, 33, 67, 17, 69, 35, 71, 3
Offset: 1
a(5)=5 because 5 is a single odd prime.
a(9)=3 because 9=3*3 has as squarefree part 3.
a(1)=1 because 1 is a power of 2, having no odd primes as a factor.
-
A204455 := proc(n)
local p;
numtheory[factorset](n) minus {2} ;
mul(p,p=%) ;
end proc:
seq(A204455(n),n=1..40) ; # R. J. Mathar, Jan 25 2017
-
f[n_] := Select[First /@ FactorInteger@ n, PrimeQ@ # && OddQ@ # &]; Times @@@ (f /@ Range@ 120) (* Michael De Vlieger, Apr 08 2015 *)
-
a(n) = {my(f = factor(n)); prod(k=1, #f~, if (f[k,1] % 2, f[k,1], 1));} \\ Michel Marcus, Apr 07 2015
-
a(n) = factorback(setminus(factorint(n)[, 1]~, [2])) \\ Jianing Song, Aug 09 2022
A007947
Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
Original entry on oeis.org
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1
G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
- Masum Billal, Divisible Sequence and its Characteristic Sequence, arXiv:1501.00609 [math.NT], 2015, theorem 11 page 5.
- Henry Bottomley, Some Smarandache-type multiplicative sequences
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Jarosław Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
- Neville Holmes, Integer Sequences [Broken link]
- Serge Lang, Old and New Conjectured Diophantine Inequalities, Bull. Amer. Math. Soc., 23 (1990), 37-75. see p. 39.
- Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
- D. H. Lehmer, Euler constants for arithmetical progressions, Collection of articles in memory of Juriĭ Vladimirovič Linnik. Acta Arith. 27 (1975), 125--142. MR0369233 (51 #5468). See N_k on page 131.
- Ivar Peterson, The Amazing ABC Conjecture
- Paul Tarau, Emulating Primality with Multiset Representations of Natural Numbers, in Theoretical Aspects of Computing, ICTAC 2011, Lecture Notes in Computer Science, 2011, Volume 6916/2011, 218-238
- Paul Tarau, Towards a generic view of primality through multiset decompositions of natural numbers, Theoretical Computer Science, Volume 537, 5 June 2014, Pages 105-124.
- Wikipedia, Radical of an integer.
More general factorization-related properties, specific to n:
A020639,
A028234,
A020500,
A010051,
A284318,
A000005,
A001221,
A005361,
A034444,
A014963,
A128651,
A267116.
A003961,
A059896 are used to express relationship between terms of this sequence.
-
a007947 = product . a027748_row -- Reinhard Zumkeller, Feb 27 2012
-
[ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
-
with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
A007947 := n -> ilcm(op(numtheory[factorset](n))):
seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
A:= n -> convert(numtheory:-factorset(n),`*`):
seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
-
rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
-
a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
-
for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
-
from sympy import primefactors, prod
def a(n): return 1 if n < 2 else prod(primefactors(n))
[a(n) for n in range(1, 51)] # Indranil Ghosh, Apr 16 2017
-
def A007947(n): return mul(p for p in prime_divisors(n))
[A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
-
(define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017
Original entry on oeis.org
1, 3, 5, 7, 3, 11, 13, 15, 17, 19, 21, 23, 5, 3, 29, 31, 33, 35, 37, 39, 41, 43, 15, 47, 7, 51, 53, 55, 57, 59, 61, 21, 65, 67, 69, 71, 73, 15, 77, 79, 3, 83, 85, 87, 89, 91, 93, 95, 97, 33, 101, 103, 105, 107, 109, 111, 113, 115, 39, 119, 11, 123, 5, 127, 129, 131, 133, 15, 137
Offset: 1
-
with(numtheory): A007947 := proc(n) local i,t1,t2; t1 :=ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end: seq(A007947(2*n-1),n=1..78); # Emeric Deutsch, Dec 15 2004
-
a[n_] := Times @@ (First /@ FactorInteger[2*n-1]); Array[a, 100] (* Amiram Eldar, Nov 19 2022*)
-
a(n) = factorback(factorint(2*n-1)[, 1]); \\ Amiram Eldar, Nov 19 2022
A374436
Triangle read by rows: T(n, k) = Product_{p in PF(n) union PF(k)} p, where PF(a) is the set of the prime factors of a.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 3, 6, 3, 2, 2, 2, 6, 2, 5, 5, 10, 15, 10, 5, 6, 6, 6, 6, 6, 30, 6, 7, 7, 14, 21, 14, 35, 42, 7, 2, 2, 2, 6, 2, 10, 6, 14, 2, 3, 3, 6, 3, 6, 15, 6, 21, 6, 3, 10, 10, 10, 30, 10, 10, 30, 70, 10, 30, 10, 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 11
Offset: 0
[ 0] 1;
[ 1] 1, 1;
[ 2] 2, 2, 2;
[ 3] 3, 3, 6, 3;
[ 4] 2, 2, 2, 6, 2;
[ 5] 5, 5, 10, 15, 10, 5;
[ 6] 6, 6, 6, 6, 6, 30, 6;
[ 7] 7, 7, 14, 21, 14, 35, 42, 7;
[ 8] 2, 2, 2, 6, 2, 10, 6, 14, 2;
[ 9] 3, 3, 6, 3, 6, 15, 6, 21, 6, 3;
[10] 10, 10, 10, 30, 10, 10, 30, 70, 10, 30, 10;
[11] 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 11;
Family:
A374433 (intersection),
A374434 (symmetric difference),
A374435 (difference), this sequence (union).
-
PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
A374436 := (n, k) -> mul(PF(n) union PF(k)):
seq(print(seq(A374436(n, k), k = 0..n)), n = 0..11);
-
nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Apply[Times, Union[s[k], s[n]]], {n, 0, nn}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 11 2024 *)
-
# Function A374436 defined in A374433.
for n in range(12): print([A374436(n, k) for k in range(n + 1)])
Showing 1-4 of 4 results.
Comments