A357689 a(n) = n/A204455(n), where A204455(n) is the product of odd noncomposite divisors of n.
1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 1, 16, 1, 6, 1, 4, 1, 2, 1, 8, 5, 2, 9, 4, 1, 2, 1, 32, 1, 2, 1, 12, 1, 2, 1, 8, 1, 2, 1, 4, 3, 2, 1, 16, 7, 10, 1, 4, 1, 18, 1, 8, 1, 2, 1, 4, 1, 2, 3, 64, 1, 2, 1, 4, 1, 2, 1, 24, 1, 2, 5, 4, 1, 2, 1, 16, 27, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 4, 1, 2, 1, 32, 1, 14, 3, 20
Offset: 1
Examples
n = A204455(n)*a(n): 1 = 1*1, 2 = 1*2, 3 = 3*1, 4 = 1*4, 5 = 5*1, 6 = 3*2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[(2*n)/&*PrimeDivisors(2*n): n in [1..100]];
-
Magma
[n/&*[d: d in Divisors(n) | d*#[m: m in [0..n-1] | -m^d mod d eq m] eq #[m: m in [0..n-1] | m^d mod d eq m]]: n in [1..100]];
-
Mathematica
f[p_, e_] := p^(e - If[p == 2, 0, 1]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 10 2022 *)
Formula
a(n)*A204455(n) = n.
a(n) = EvenPart(n)*A003557(OddPart(n)). - Peter Munn, Oct 09 2022
Multiplicative with a(p^e) = p^(e-1) if p > 2 and a(2^e) = 2^e. - Amiram Eldar, Oct 10 2022
a(n) = A003557(2*n). - Ridouane Oudra, Jul 12 2025
Comments