A022328 Exponent of 2 (value of i) in n-th number of form 2^i*3^j, i >= 0, j >= 0 (see A003586).
0, 1, 0, 2, 1, 3, 0, 2, 4, 1, 3, 0, 5, 2, 4, 1, 6, 3, 0, 5, 2, 7, 4, 1, 6, 3, 0, 8, 5, 2, 7, 4, 1, 9, 6, 3, 0, 8, 5, 2, 10, 7, 4, 1, 9, 6, 3, 11, 0, 8, 5, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 0, 8, 5, 13, 2, 10, 7, 4, 12, 1, 9, 6, 14, 3, 11, 0, 8, 5, 13, 2, 10, 7, 15, 4, 12, 1, 9, 6, 14, 3, 11, 0, 8, 16, 5, 13, 2
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from Franklin T. Adams-Watters)
- Clark Kimberling, Numeration systems and fractal sequences, Acta Arithmetica 73 (1995) 103-117.
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a022328 n = a022328_list !! (n-1) (a022328_list, a022329_list) = unzip $ f $ singleton (1, (0, 0)) where f s = (i, j) : f (insert (2 * y, (i + 1, j)) $ insert (3 * y, (i, j + 1)) s') where ((y, (i, j)), s') = deleteFindMin s -- Reinhard Zumkeller, Nov 19 2015, May 16 2015
-
Mathematica
t = Sort[Flatten[Table[2^i 3^j, {i, 0, 200}, {j, 0, 200}]]]; Table[IntegerExponent[t[[n]], 2], {n, 1, 200}] (* A022338 *) (* Clark Kimberling, Mar 18 2015 *)
-
Python
from sympy import integer_log def A022328(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return (~(m:=bisection(f,n,n))&m-1).bit_length() # Chai Wah Wu, Sep 15 2024
Formula
a(n) = A191475(n) - 1. - Franklin T. Adams-Watters, Mar 19 2009 [Corrected by N. J. A. Sloane, May 26 2024]
Comments