A100048 A Chebyshev transform of the Pell numbers.
0, 1, 2, 2, 4, 9, 16, 29, 56, 106, 198, 373, 704, 1325, 2494, 4698, 8848, 16661, 31376, 59089, 111276, 209554, 394634, 743177, 1399552, 2635641, 4963450, 9347186, 17602652, 33149377, 62427024, 117562789, 221394656, 416931194, 785166286
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Bala, Linear divisibility sequences and Chebyshev polynomials
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-1).
Programs
-
Mathematica
LinearRecurrence[{2,-1,2,-1},{0,1,2,2},40] (* Harvey P. Dale, Jun 07 2015 *)
-
PARI
my(x='x+O('x^50)); Vec(x*(1-x^2)/(1-2*x+x^2-2*x^3+x^4)) \\ G. C. Greubel, Aug 08 2017
Formula
G.f.: x(1-x^2)/(1-2x+x^2-2x^3+x^4).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*A000129(n-2*k)/(n-k).
From Peter Bala, Mar 24 2014: (Start)
a(n) = |u(n)|^2, where {u(n)} is the Lucas-type sequence defined by the recurrence u(0) = 0, u(1) = 1 and u(n) = P*u(n-1) - u(n-2) for n >= 2, where P = 1/2*(sqrt(7) + i).
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(2))/2 and beta = (1 - sqrt(2))/2 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1/4; 1, 1].
The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/2*(sqrt(7) + i)*x + x^2) and x/(1 - 1/2*(sqrt(7) - i)*x + x^2). (End)
Comments