cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100048 A Chebyshev transform of the Pell numbers.

Original entry on oeis.org

0, 1, 2, 2, 4, 9, 16, 29, 56, 106, 198, 373, 704, 1325, 2494, 4698, 8848, 16661, 31376, 59089, 111276, 209554, 394634, 743177, 1399552, 2635641, 4963450, 9347186, 17602652, 33149377, 62427024, 117562789, 221394656, 416931194, 785166286
Offset: 0

Views

Author

Paul Barry, Oct 31 2004

Keywords

Comments

A Chebyshev transform of the Pell numbers A000129: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)).
This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 2, P2 = -1, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. - Peter Bala, Mar 24 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,2,-1},{0,1,2,2},40] (* Harvey P. Dale, Jun 07 2015 *)
  • PARI
    my(x='x+O('x^50)); Vec(x*(1-x^2)/(1-2*x+x^2-2*x^3+x^4)) \\ G. C. Greubel, Aug 08 2017

Formula

G.f.: x(1-x^2)/(1-2x+x^2-2x^3+x^4).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*A000129(n-2*k)/(n-k).
From Peter Bala, Mar 24 2014: (Start)
a(n) = |u(n)|^2, where {u(n)} is the Lucas-type sequence defined by the recurrence u(0) = 0, u(1) = 1 and u(n) = P*u(n-1) - u(n-2) for n >= 2, where P = 1/2*(sqrt(7) + i).
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(2))/2 and beta = (1 - sqrt(2))/2 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1/4; 1, 1].
The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/2*(sqrt(7) + i)*x + x^2) and x/(1 - 1/2*(sqrt(7) - i)*x + x^2). (End)