cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100066 Expansion of x/((1-x)*sqrt(1-4*x^2)).

Original entry on oeis.org

0, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99, 351, 351, 1275, 1275, 4707, 4707, 17577, 17577, 66197, 66197, 250953, 250953, 956385, 956385, 3660541, 3660541, 14061141, 14061141, 54177741, 54177741, 209295261, 209295261, 810375651, 810375651
Offset: 0

Views

Author

Paul Barry, Nov 02 2004

Keywords

Comments

An inverse Chebyshev transform of x/(1-x+x^2), where the Chebyshev transform of g(x) is ((1-x^2)/(1+x^2))*g(x/(1+x^2)) and the inverse transform maps a g.f. A(x) to (1/sqrt(1-4*x^2))*A(x*c(x^2)) where c(x) is the g.f. of the Catalan numbers A000108.
Hankel transform of a(n+1) is A120582. The Hankel transform of a(n) is (-1)*[x^n] x/(1+2*x-4*x^2). - Paul Barry, Mar 29 2010

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    [0] cat Coefficients(R!( x/((1-x)*Sqrt(1-4*x^2)) )); // G. C. Greubel, Mar 17 2025
    
  • Maple
    a:=n->sum(binomial(2*j,j), j=0..n): seq(a(n/2), n=-1..40); # Zerinvary Lajos, Apr 30 2007
  • Mathematica
    CoefficientList[Series[x/((1-x)*Sqrt[1-4*x^2]), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    my(x='x+O('x^41)); concat(0, Vec(x/((1-x)*sqrt(1-4*x^2)))) \\ G. C. Greubel, Jan 30 2017; Mar 17 2025
    
  • SageMath
    def b(n): return sum(binomial(2*k,k) for k in range(n+1))
    def A100066(n): return b((n-1)//2)
    print([A100066(n) for n in range(41)]) # G. C. Greubel, Mar 17 2025

Formula

a(n) = Sum_{k=0..n} if(mod(n-k, 2)=0, binomial(n, (n-k)/2) * 2*sin(Pi*k/3) / sqrt(3)).
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1+(-1)^(n-k))*sin(Pi*k/3)/sqrt(3).
a(n) = Sum_{k=0..n} binomial(n-1, (n-1)/2)*(1-(-1)^k)/2.
a(n+1) = Sum_{k=0..floor(n/2)} binomial(2k, k) = Sum{k=0..n} binomial(k, k/2)*(1+(-1)^k)/2.
a(2n-1) = a(2n) = A006134(n-1) = Sum_{k=0..n}( (2*k)!/(k!)^2 ) for n > 0. - Alexander Adamchuk, Feb 23 2007
From Paul Barry, Mar 29 2010: (Start)
G.f.: x*(1+x)/((1-x^2)*sqrt(1-4*x^2)) = x/((1-x)*sqrt(1-4*x^2)).
E.g.f.: Integral_{t=0..x} exp(x-t)*Bessel_I(0,2t). (End)
D-finite with recurrence: (n-1)*a(n) - (n-1)*a(n-1) - 4*(n-2)*a(n-2) + 4*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ (3-(-1)^n) * 2^(n+1/2) / (6*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014