A100107 Inverse Moebius transform of Lucas numbers (A000032) 1,3,4,7,11,..
1, 4, 5, 11, 12, 26, 30, 58, 81, 138, 200, 355, 522, 876, 1380, 2265, 3572, 5880, 9350, 15272, 24510, 39806, 64080, 104084, 167773, 271968, 439285, 711530, 1149852, 1862022, 3010350, 4873112, 7881400, 12755618, 20633280, 33391491, 54018522, 87413156
Offset: 1
Keywords
Examples
a(2) = 4 because the prime 2 is divisible only by 1 and 2, so L(1) + L(2) = 1 + 3 = 4. a(3) = 5 because the prime 3 is divisible only by 1 and 3, so L(1) + L(3) = 1 + 4 = 5. a(4) = 11 because the semiprime 4 is divisible only by 1, 2, 4, so L(1) + L(2) + L(4) = 1 + 3 + 7 = 11.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): with(combinat): a:=proc(n) local div: div:=divisors(n): sum(2*fibonacci(div[j]+1)-fibonacci(div[j]),j=1..tau(n)) end: seq(a(n),n=1..42); # Emeric Deutsch, Jul 31 2005
-
Mathematica
Table[Plus @@ Map[Function[d, LucasL[d]], Divisors[n]], {n, 100}] (* T. D. Noe, Aug 14 2012 *)
Formula
a(n) = Sum_{d|n} Lucas(d) = Sum_{d|n} A000032(d).
G.f.: Sum_{k>=1} Lucas(k) * x^k/(1 - x^k) = Sum_{k>=1} x^k * (1 + 2*x^k)/(1 - x^k - x^(2*k)). - Ilya Gutkovskiy, Aug 14 2019
a(n) ~ phi^n, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 10 2021
Extensions
More terms from Emeric Deutsch, Jul 31 2005