cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100132 a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k) * 2^(n-3k).

Original entry on oeis.org

1, 2, 4, 8, 18, 44, 112, 288, 740, 1896, 4848, 12384, 31624, 80752, 206208, 526592, 1344784, 3434272, 8770368, 22397568, 57198368, 146071744, 373034240, 952645120, 2432840256, 6212924032, 15866403584, 40519208448, 103476899968
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Comments

Binomial transform of 1,1,1,1,3,3,7,7,41,... (g.f. (1-x)(1+x)^2/(1-2x^2-x^4)).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-4,0,2},{1,2,4,8},30] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-2*k, 2*k)*2^(n-3*k)); \\ Michel Marcus, Oct 09 2021

Formula

G.f.: (1-2x)/((1-2x)^2-2x^4).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)2^(n-3k/2)(1+(-1)^k)/2. - Paul Barry, Jan 22 2005