cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100134 a(n) = Sum_{k=0..floor(n/6)} binomial(n-3k,3k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 86, 128, 194, 305, 497, 827, 1381, 2287, 3739, 6042, 9693, 15519, 24901, 40126, 64933, 105364, 171112, 277696, 450017, 728201, 1177181, 1902321, 3074733, 4972113, 8044478, 13020029, 21075947, 34114553
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Comments

For n > 1, a(n-1) + A101551(n-1) + A102516(n-2) = F(n) where F(n) is the n-th Fibonacci number (A000045(n)). This sequence, A101551 and A102516 can be viewed as parts of a three-term linear recurrence defined as b(0) = b(1) = (1,0,0) = (x(0),y(0),z(0)) = (x(1),y(1),z(1)); b(n+1) = (x(n)+y(n-1),y(n)+z(n-1),z(n)+x(n-1)); which gives a(n) = x(n), A101551(n) = y(n), A102516(n) = z(n+1). - Gerald McGarvey, Apr 26 2005

Crossrefs

Programs

  • Maple
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,X,X))), X = Sequence(b,card >= 2)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=2..41); # Zerinvary Lajos, Mar 26 2008
  • Mathematica
    Table[Sum[Binomial[n-3k,3k],{k,0,Floor[n/6]}],{n,0,40}] (* Harvey P. Dale, Sep 22 2020 *)
  • PARI
    a(n) = sum(k=0, n\6, binomial(n-3*k, 3*k)); \\ Michel Marcus, Sep 08 2017

Formula

G.f.: (1-x)^2/((1-x)^3 - x^6);
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-6).